Skip to main content

Homography and Morphological Detection-Based Virtual Shooting Range

  • Conference paper
  • First Online:
Ubiquitous Networking (UNet 2018)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11277))

Included in the following conference series:

Abstract

The purpose of this paper is to describe the development and present the results of the design and implementation of a laser shooting simulator based on computer vision. Our proposal is to develop a virtual environment through a simulation platform to project it on a surface and combine it with computer vision to interact with created targets. Two main stages haven been structured: adjustment and calibration of the camera in the environment and integration of the laser in the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Visual SLAM with a RGB-D camera on a quadrotor UAV using on-board processing. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 596–606. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_51

    Chapter  Google Scholar 

  2. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: Real-time 3D modeling with a RGB-D camera and on-board processing. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 410–419. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_35

    Chapter  Google Scholar 

  3. Aguilar, W.G., Rodríguez, G.A., Álvarez, L., Sandoval, S., Quisaguano, F., Limaico, A.: On-board visual SLAM on a UGV using a RGB-D camera. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds.) ICIRA 2017. LNCS (LNAI), vol. 10464, pp. 298–308. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65298-6_28

    Chapter  Google Scholar 

  4. Champagne, R., Dessaint, L.A., Fortin-Blanchette, H., Sybille, G.: Analysis and validation of a real-time AC drive simulator. IEEE Trans. Power Electron. 19(2), 336–345 (2004). https://doi.org/10.1109/TPEL.2003.823242

    Article  Google Scholar 

  5. Lee, W.-S., Kim, J.-H., Cho, J.-H.: A driving simulator as a virtual reality tool. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 71–76, May 1998. https://doi.org/10.1109/ROBOT.1998.676264

  6. Korzeniowski, P., Brown, D.C., Sodergren, M.H., Barrow, A., Bello, F.: Validation of NOViSE. Surg. Innov. 24(1), 55–65 (2017). https://doi.org/10.1177/1553350616669896

    Article  Google Scholar 

  7. Sugand, K., Akhtar, K., Khatri, C., Cobb, J., Gupte, C.: Training effect of a virtual reality haptics-enabled dynamic hip screw simulator. Acta Orthop. 86(6), 695–701 (2015). https://doi.org/10.3109/17453674.2015.1071111

    Article  Google Scholar 

  8. Aslandere, T., Dreyer, D., Pankratz, F.: Virtual hand-button interaction in a generic virtual reality flight simulator. In: IEEE Aerospace Conference Proceedings, June (2015). https://doi.org/10.1109/AERO.2015.7118876

  9. Aguilar, W.G., Morales, S.G.: 3D environment mapping using the Kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)

    Article  Google Scholar 

  10. Aguilar, W.G., Morales, S., Ruiz, H., Abad, V.: RRT* GL based optimal path planning for real-time navigation of UAVs. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 585–595. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_50

    Chapter  Google Scholar 

  11. Smith-miles, K., Smith-miles, K.: Vision Assisted Safety Enhanced Shooting Range Simulator, January 2010

    Google Scholar 

  12. Soetedjo, A., Nurcahyo, E.: Developing of low cost vision-based shooting range simulator. IJCSNS Int. J. Comput. Sci. Netw. Secur. 11(2), 109–113 (2011)

    Google Scholar 

  13. Bhagat, K.K., Liou, W.K., Chang, C.Y.: A cost-effective interactive 3D virtual reality system applied to military live firing training. Virtual Real. 20(2), 127–140 (2016). https://doi.org/10.1007/s10055-016-0284-x

    Article  Google Scholar 

  14. Kiploks, J., Vjaters, J.: Shooting Simulator structure. Sci. J. RTU Power Electr. Eng. 22, 118–126 (2008)

    Google Scholar 

  15. Fraser, C.S.: Automatic camera calibration in close range photogrammetry. Photogramm. Eng. Remote. Sens. 79(4), 381–388 (2013). https://doi.org/10.14358/PERS.79.4.381

    Article  Google Scholar 

  16. Aguilar, W.G., et al.: Pedestrian detection for UAVs using cascade classifiers and saliency maps. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 563–574. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_48

    Chapter  Google Scholar 

  17. Aguilar, W.G., et al.: Cascade classifiers and saliency maps based people detection. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017. LNCS, vol. 10325, pp. 501–510. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60928-7_42

    Chapter  Google Scholar 

  18. Mizutani, H., Yamamoto, D., Takahashi, N.: A Geometric Transformation Method for Preventing Focuses from Overlapping in a Focus + Glue + Context Map (n.d.)

    Google Scholar 

  19. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Cengage Learning, Boston (2014)

    Google Scholar 

  20. Aguilar, W.G., Salcedo, V.S., Sandoval, D.S., Cobeña, B.: Developing of a video-based model for UAV autonomous navigation. In: Barone, D.A.C., Teles, E.O., Brackmann, C.P. (eds.) LAWCN 2017. CCIS, vol. 720, pp. 94–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71011-2_8

    Chapter  Google Scholar 

  21. Aguilar, W.G., Casaliglla, V.P., Pólit, J.L.: Obstacle avoidance based-visual navigation for micro aerial vehicles. Electronics 6(1), 10 (2017)

    Article  Google Scholar 

  22. Aguilar, W.G., Casaliglla, V.P., Pólit, J.L., Abad, V., Ruiz, H.: Obstacle avoidance for flight safety on unmanned aerial vehicles. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2017. LNCS, vol. 10306, pp. 575–584. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59147-6_49

    Chapter  Google Scholar 

  23. Xue, W., Zhang, L., Mou, X., Bovik, A.C.: Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans. Image Process. 23(2), 668–695 (2014). https://doi.org/10.1109/TIP.2013.2293423

    Article  MathSciNet  MATH  Google Scholar 

  24. Vassou, S.A., Amanatiadis, A., Christodoulou, K., Chatzichristoos, S.A.: CoMo: a compact composite moment-based descriptor for image retrieval. In: Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing. CBMI 2017, vol. 5, no. 17, pp. 1–5 (2017). https://doi.org/10.1145/3095713.3095744

  25. Chen, B., Shu, H., Zhang, H., Chen, G., Luo, L., Quaternions, A.: Color image analysis by quaternion Zernike moments, no. 7, pp. 7–10 (2010). https://doi.org/10.1109/ICPR.2010.158

  26. Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)

    Article  Google Scholar 

  27. Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 2014(1), 46 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguilar, W.G., Castro, P., Caballeros, J., Segarra, D. (2018). Homography and Morphological Detection-Based Virtual Shooting Range. In: Boudriga, N., Alouini, MS., Rekhis, S., Sabir, E., Pollin, S. (eds) Ubiquitous Networking. UNet 2018. Lecture Notes in Computer Science(), vol 11277. Springer, Cham. https://doi.org/10.1007/978-3-030-02849-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02849-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02848-0

  • Online ISBN: 978-3-030-02849-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics