Skip to main content

Hermitian Laplacian Operator for Vector Representation of Directed Graphs: An Application to Word Association Norms

  • Conference paper
  • First Online:
Advances in Computational Intelligence (MICAI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10633))

Included in the following conference series:

  • 544 Accesses

Abstract

In this paper, we propose a spectral method for the analysis of directed graphs. For this purpose, a Hermitian Laplacian operator is proposed, that defines interesting properties for the embedding of a graph into a vector space. We use the notions of the Hermitian Laplacian operator to embed a directed graph structure, build over corpura of Word Association Norms, into a vector space. We show that the Hermitian Laplacian operator has advantages over a traditional Laplacian operator when the original structure of the graph is directed. Moreover, we compare the lexical relations obtained by a WAN graph with the connections the Hermitian Laplacian operator establishes between the words of the corpora.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.jeuxdemots.org/.

  2. 2.

    http://www.smallworldofwords.com.

  3. 3.

    In this paper, we focused in directed graphs; nevertheless, a directed graph is just a special case of a mixed graph. Therefore, when we refer to mixed graphs, it necessarily implies directed graphs.

  4. 4.

    It is pointed that when the graph is undirected this operators are the traditional Adjacency and Laplacian operators [22,23,24].

  5. 5.

    Two things need to be noted: (1) As LH is hermitian all the eigenvalues in the spectrum are real; (2) \(GL_n(\mathbb {C})\) is the General Linear Group of matrices of \(n\times n\) in \(\mathbb {C}\), this is, not invertible matrices.

  6. 6.

    The entropy was determined through a random walk in the graph [34, 35].

  7. 7.

    Precision at \(k, k= 1,2,...\) is a common method in machine translation literature; for example, [45]. In here, we adapt it to evaluate the semantic quality of the embedding word vectors.

References

  1. Bollobás, B.: Modern Graph Theory. Springer, Heidelberg (1998). https://doi.org/10.1007/978-1-4612-0619-4

    Book  MATH  Google Scholar 

  2. Newman, M.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  4. Albert, A., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)

    Article  Google Scholar 

  5. Kayne, R.: The Antisymmetry of Syntax. MIT Press, Cambridge (1994)

    Google Scholar 

  6. Steyvers, M., Tenenbaum, J.B.: The large-scale structure of semantic networks: statistical analyses and a model of semantic growth. Cogn. Sci. 29, 41–78 (2005)

    Article  Google Scholar 

  7. Widdows, D., Dorow, B.: A graph model for unsupervised lexical acquisition. In: 19th International Conference on Computational Linguistics, 24 August–1 September, Taipeh, Taiwan (2002)

    Google Scholar 

  8. Rapp, R.: Word sense discovery based on sense descriptor dissimilarity. In: Proceedings of the Ninth Machine Translation Summit, pp. 315–322 (2003)

    Google Scholar 

  9. Sowa, J.F.: Semantic networks. In: Encyclopedia of Cognitive Science (2006)

    Google Scholar 

  10. Aitchison, J.: Words in the Mind: An Introduction to the Mental Lexicon. Wiley, Hoboken (2012)

    Google Scholar 

  11. Ferret, O.: Using collocations for topic segmentation and link detection. In: COLING 2002, pp. 260–266 (2002)

    Google Scholar 

  12. Ferret, O.: Building a network of topical relations from a corpus. In: LREC 2006 (2006)

    Google Scholar 

  13. Zock, M., Ferret, O., Schwab, D.: Deliberate word access: an intuition, a roadmap and some preliminary empirical results. Int. J. Speech Technol. 13, 201–218 (2010)

    Article  Google Scholar 

  14. Arias-Trejo, N., Barrón-Martínez, J.B.: Base de datos: Normas de asociación de palabras para el español de méxico en escolares (2014)

    Google Scholar 

  15. Arias-Trejo, N., Barrón-Martínez, J.B., Lopez-Alderete, R., Robles-Aguirre, F.: Corpus de normas de asociacion de palabras para el espanol de Mexico [NAP]. Universidad Nacional Autonoma de Mexico (2015)

    Google Scholar 

  16. Kent, G.H.: Emergency battery of one-minute tests. J. Psychol. 13, 141–164 (1942)

    Article  Google Scholar 

  17. Lafourcade, M.: Making people play for lexical acquisition with the JeuxDeMots prototype. In: 7th International Symposium on Natural Language Processing, p. 7 (2007)

    Google Scholar 

  18. Enguix, G.B., Rapp, R., Zock, M.: A graph-based approach for computing free word associations. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), 26–31 May 2014, Reykjavik, Iceland, European Language Resources Association (ELRA), no. 1150, pp. 3027–3033 (2014)

    Google Scholar 

  19. Baroni, M., Bernardi, R., Zamparelli, R.: Frege in space: a program of compositional distributional semantics. LiLT (Linguist. Issues Lang. Technol.) 9 (2014)

    Google Scholar 

  20. Brychcín, T., Konopík, M.: Semantic spaces for improving language modeling. Comput. Speech Lang. 28, 192–209 (2014)

    Article  Google Scholar 

  21. Biemann, C.: Vectors or graphs? On differences of representations for distributional semantic models. In: COLING 2016, p. 1 (2016)

    Google Scholar 

  22. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23, 298–305 (1973)

    MathSciNet  MATH  Google Scholar 

  23. Anderson Jr., W.N., Morley, T.D.: Eigenvalues of the Laplacian of a graph. Linear Multilinear Algebra 18, 141–145 (1985)

    Article  MathSciNet  Google Scholar 

  24. Mohar, B., Alavi, Y., Chartrand, G., Oellermann, O.: The Laplacian spectrum of graphs. Graph Theory Comb. Appl. 2, 12 (1991)

    Google Scholar 

  25. Liu, J., Li, X.: Hermitian-adjacency matrices and Hermitian energies of mixed graphs. Linear Algebra Appl. 466, 182–207 (2015)

    Article  MathSciNet  Google Scholar 

  26. Halmos, P.R.: What does the spectral theorem say? Am. Math. Mon. 70, 241–247 (1963)

    Article  MathSciNet  Google Scholar 

  27. Mantoiu, M., Raikov, G., de Aldecoa, R.T.: Spectral Theory and Mathematical Physics. Operator Theory: Advances and Applications, vol. 254. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-29992-1

    Book  MATH  Google Scholar 

  28. Birman, M.S., Solomjak, M.Z.: Spectral Theory of Self-adjoint Operators in Hilbert Space, vol. 5. Springer, Heidelberg (2012). https://doi.org/10.1007/978-94-009-4586-9

    Book  Google Scholar 

  29. Zhang, X.D., Luo, R.: The Laplacian eigenvalues of mixed graphs. Linear Algebra Appl. 362, 109–119 (2003)

    Article  MathSciNet  Google Scholar 

  30. Rice, J.R.: Experiments on gram-schmidt orthogonalization. Math. Comput. 20, 325–328 (1966)

    Article  MathSciNet  Google Scholar 

  31. Yu, G., Qu, H.: Hermitian Laplacian matrix and positive of mixed graphs. Appl. Math. Comput. 269, 70–76 (2015)

    MathSciNet  Google Scholar 

  32. Jackson-Maldonado, D., et al.: MacArthur Inventarios del Desarrollo de Habilidades Comunicativas: User’s Guide and Technical Manual. PH Brookes, Baltimore (2003)

    Google Scholar 

  33. Ferre-i-Cancho, R., Solé, R.V.: The small world of human language. Proc. Roy. Soc. Lond. B: Biol. Sci. 268, 2261–2265 (2001)

    Article  Google Scholar 

  34. Tamir, R.: A random walk through human associations. In: Fifth IEEE International Conference on Data Mining, 8-pp. IEEE (2005)

    Google Scholar 

  35. Burioni, R., Cassi, D.: Random walks on graphs: ideas, techniques and results. J. Phys. A: Math. Gen. 38, R45 (2005)

    Article  MathSciNet  Google Scholar 

  36. Hu, D., Li, X., Liu, X., Zhang, S.: The spectral distribution of random mixed graphs. Linear Algebra Appl. 519, 343–365 (2017)

    Article  MathSciNet  Google Scholar 

  37. Lu, Y., Wang, L., Zhou, Q.: Hermitian-Randić matrix and Hermitian-Randić energy of mixed graphs. J. Inequalities Appl. 2017, 54 (2017)

    Article  Google Scholar 

  38. Gutman, I., Li, X., Zhang, J.: Graph energy. In: Analysis of Complex Networks: From Biology to Linguistics, pp. 145–174 (2009)

    Google Scholar 

  39. Du, W., Li, X., Li, Y.: The energy of random graphs. Linear Algebra Appl. 435, 2334–2346 (2011)

    Article  MathSciNet  Google Scholar 

  40. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. NIPS 14, 585–591 (2001)

    Google Scholar 

  41. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003)

    Article  Google Scholar 

  42. Ng, A.Y., Jordan, M.I., Weiss, Y., et al.: On spectral clustering: analysis and an algorithm. NIPS 14, 849–856 (2001)

    Google Scholar 

  43. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  44. Yu, G., Liu, X., Qu, H.: Singularity of Hermitian (quasi-) Laplacian matrix of mixed graphs. Appl. Math. Comput. 293, 287–292 (2017)

    MathSciNet  Google Scholar 

  45. Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168 (2013)

  46. Mijangos, V., Barrón-Martínez, J.B., Arias-Trejo, N., Bel-Enguix, G.: A graph-based analysis of the corpus of word association norms for Mexican Spanish. In: Proceedings of the 2nd International Conference on Complexity, Future Information Systems and Risk - Volume 1: COMPLEXIS, INSTICC, pp. 87–93. ScitePress (2017)

    Google Scholar 

Download references

Acknowledgements

Thanks to the project PAPIIT IA400117 “Simulación de normas de asociación de palabras mediante redes de coocurrencias”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Mijangos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mijangos, V., Bel-Engux, G., Arias-Trejo, N., Barrón-Martínez, J.B. (2018). Hermitian Laplacian Operator for Vector Representation of Directed Graphs: An Application to Word Association Norms. In: Castro, F., Miranda-Jiménez, S., González-Mendoza, M. (eds) Advances in Computational Intelligence. MICAI 2017. Lecture Notes in Computer Science(), vol 10633. Springer, Cham. https://doi.org/10.1007/978-3-030-02840-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02840-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02839-8

  • Online ISBN: 978-3-030-02840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics