Skip to main content

Introducing a Classification Model Based on SVM for Network Intrusion Detection

  • Conference paper
  • First Online:
Advances in Soft Computing (MICAI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10632))

Included in the following conference series:

Abstract

Intrusion Detection Systems are designed to provide security into computer networks. In this article, we used rough sets theory for feature selection to enhance support vector machine in intrusion detection. Testing and evaluation of the proposed method has been performed mainly on NSL-KDD data sets as a corrected version of KDD-CUP99. Experimental results indicate that the proposed method shows a good performance in providing high precision, intrusion detection readout, less error notification rate and more detailed detection compared to its basic and simpler methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Endorf, C., Eugene, S., Mellander, J.: Intrusion Detection & Prevention. McGraw-Hill, New York (2004)

    Google Scholar 

  2. Santos, I., Sanz, B., Laorden, C., Brezo, F., Bringas, P.G.: Opcode-sequence-based semi-supervised unknown malware detection. Comput. Intell. Secur. Inf. Syst. 6694, 50–57 (2011)

    Google Scholar 

  3. Alishvandi, H., Gouraki, G.H., Parvin, H.: An enhanced dynamic detection of possible invariants based on best permutation of test cases. Comput. Syst. Sci. Eng. 31(1), 53–61 (2016)

    Google Scholar 

  4. Parvin, H., Minaei-Bidgoli, B., Alinejad-Rokny, H.: A new imbalanced learning and dictions tree method for breast cancer diagnosis. J. Bionanosci. 7(6), 673–678 (2013)

    Article  Google Scholar 

  5. Parvin, H., Alinejad-Rokny, H., Minaei-Bidgoli, B., Parvin, S.: A new classifier ensemble methodology based on subspace learning. J. Exp. Theor. Artif. Intell. 25(2), 227–250 (2013)

    Article  Google Scholar 

  6. Parvin, H., Minaei-Bidgoli, B., Alinejad-Rokny, H., Punch, W.F.: Data weighing mechanisms for clustering ensembles. Comput. Electr. Eng. 39(5), 1433–1450 (2013)

    Article  Google Scholar 

  7. Parvin, H., Alizadeh, H., Minaei-Bidgoli, B.: A New method for constructing classifier ensembles. JDCTA 3(2), 62–66 (2009)

    Article  Google Scholar 

  8. Parvin, H., Alinejad-Rokny, H., Asadi, M.: An ensemble based approach for feature selection. J. Appl. Sci. Res. 7(9), 33–43 (2011)

    Google Scholar 

  9. Parvin, H., Alizadeh, H., Minaei-Bidgoli, B., Analoui, M.: CCHR: combination of classifiers using heuristic retraining. In: International Conference on Networked Computing and Advanced Information Management (NCM 2008) (2008)

    Google Scholar 

  10. Parvin, H., Alizadeh, H., Fathy, M., Minaei-Bidgoli, B.: Improved face detection using spatial histogram features. In: IPCV 2008, pp. 381–386 (2008)

    Google Scholar 

  11. Parvin, H., Alinejad-Rokny, H., Parvin, S.: A classifier ensemble of binary classifier ensembles. Int. J. Learn. Manag. Syst. 1(2), 37–47 (2013)

    Article  Google Scholar 

  12. Parvin, H., Minaei-Bidgoli, B.: A clustering ensemble framework based on elite selection of weighted clusters. Adv. Data Anal. Classif. 7(2), 181–208 (2013)

    Article  MathSciNet  Google Scholar 

  13. Alizadeh, H., Minaei-Bidgoli, B., Parvin, H.: Optimizing fuzzy cluster ensemble in string representation. IJPRAI 27(2), 1350005 (2013)

    MathSciNet  Google Scholar 

  14. Parvin, H., Beigi, A., Mozayani, N.: A clustering ensemble learning method based on the ant colony clustering algorithm. Int. J. Appl. Comput. Math. 11(2), 286–302 (2012)

    MathSciNet  Google Scholar 

  15. Alizadeh, H., Minaei-Bidgoli, B., Parvin, H.: To improve the quality of cluster ensembles by selecting a subset of base clusters. J. Exp. Theor. Artif. Intell. 26(1), 127–150 (2014)

    Article  Google Scholar 

  16. Alizadeh, H., Minaei-Bidgoli, B., Parvin, H.: Cluster ensemble selection based on a new cluster stability measure. Intell. Data Anal. 18(3), 389–408 (2014)

    Article  Google Scholar 

  17. Minaei-Bidgoli, B., Parvin, H., Alinejad-Rokny, H., Alizadeh, H., Punch, W.F.: Effects of resampling method and adaptation on clustering ensemble efficacy. Artif. Intell. Rev. 41(1), 27–48 (2014)

    Article  Google Scholar 

  18. Parvin, H., Minaei-Bidgoli, B.: A clustering ensemble framework based on selection of fuzzy weighted clusters in a locally adaptive clustering algorithm. Pattern Anal. Appl. 18(1), 87–112 (2015)

    Article  MathSciNet  Google Scholar 

  19. Parvin, H., Mirnabibaboli, M., Alinejad-Rokny, H.: Proposing a classifier ensemble framework based on classifier selection and decision tree. Eng. Appl. Artif. Intell. 37, 34–42 (2015)

    Article  Google Scholar 

  20. Parvin, H., Mohammadi, M., Rezaei, Z.: Face identification based on Gabor-wavelet features. Int. J. Digit. Content Technol. Appl. 6(1), 247–255 (2012)

    Article  Google Scholar 

  21. Bhutan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network anomaly detection: methods, systems and tools. IEEE Commun. Surv. Tutor. 16(1), 303–336 (2014)

    Article  Google Scholar 

  22. Luxburg, U.V., Bousquet, O.: Distance-based classification with Lipschitz functions. J. Mach. Learn. Res. 5, 669–695 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Cortes, C., Vapnik, V.: Support-vector network. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  24. Zhang, J., Perdisci, R., Lee, W., Luo, X., Sarfraz, U.: Building a scalable system for stealthy P2P-botnet detection. IEEE Trans. Inf. Forensics Secur. 9(1), 27–38 (2014)

    Article  Google Scholar 

  25. KDD Cup (1999), October 2007. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

  26. Kuang, F., Xu, W., Zhang, S.: A novel hybrid KPCA and SVM with GA model for intrusion detection. Appl. Soft Comput. 18, 178–184 (2014)

    Article  Google Scholar 

  27. NSL-KDD data set for network-based intrusion detection systems, March 2009. http://nsl.cs.unb.ca/NSL-KDD/

  28. Keshavarz, A., Ghassemian, H., Dehghani, H.: Hierarchical classification of hyperspectral images by using SVMs and neighborhood class property. In: IEEE IGARSS2005, pp. 3219–3222 (2005)

    Google Scholar 

  29. Woniakeyot, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 45–90 (2014)

    Google Scholar 

  30. Bijani, S., Robertson, D.: A review of attacks and security approaches in open multi-agent systems. Artif. Intell. Rev. 1–30 (2012)

    Google Scholar 

  31. Chebrolu, S., Abraham, A., Thomas, J.P.: Feature deduction and ensemble design of intrusion detection systems. Comput. Secur. 24, 295–307 (2005)

    Article  Google Scholar 

  32. Pawlak, Z.: Rough sets. Int. J. Comput. Inf. Sci. 11(5), 341–356 (1982)

    Article  Google Scholar 

  33. Zhou, J., Hu, L., Wang, F., Lu, H., Zhao, K.: An efficient multidimensional fusion algorithm for IOT data based on partitioning. Tsinghua Sci. Technol. 18, 369–378 (2013)

    Article  Google Scholar 

  34. Zhang, L., Zhang, G., Yu, L., Bai, Y.: Intrusion detection using rough set classification. J. Zhejiang Univ. Sci. 5(9), 1076–1086 (2004)

    Article  Google Scholar 

  35. Chen, R.C., Cheng, K., Hsieh, C.F.: Using rough set and support vector machine for network intrusion detection system. In: Proceedings of the 1st Asian Conference on Intelligent Information and Database Systems, Washington, DC, USA (2009)

    Google Scholar 

  36. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: Proceeding of the 2009 IEEE Symposium on Computational Intelligence in Security and Defense Application (CISDA) (2009)

    Google Scholar 

  37. Stolfo, S.J., Fan, W., Prodromidis, A., Chan, P.K., Lee, W.: Cost-sensitive modeling for fraud and intrusion detection: results from the JAM project. In Proceedings of the 2000 DARPA information survivability conference and exposition (2000)

    Google Scholar 

  38. Lippmann, R., Haines, J., Fried, D., Korba, J., Das, K.: The 1999 DARPA off-line intrusion detection evaluation. Comput. Netw. 34, 579–595 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samad Nejatian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dastfal, G., Nejatian, S., Parvin, H., Rezaie, V. (2018). Introducing a Classification Model Based on SVM for Network Intrusion Detection. In: Castro, F., Miranda-Jiménez, S., González-Mendoza, M. (eds) Advances in Soft Computing. MICAI 2017. Lecture Notes in Computer Science(), vol 10632. Springer, Cham. https://doi.org/10.1007/978-3-030-02837-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02837-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02836-7

  • Online ISBN: 978-3-030-02837-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics