Skip to main content

Millimeter-Wave Channel Estimation Using Coalitional Game

  • Conference paper
  • First Online:
Book cover Information and Communication Technologies of Ecuador (TIC.EC) (TICEC 2018)

Abstract

In millimeter-wave (mm-wave) massive MIMO systems, the channel estimation (CE) is a crucial component to set the mm-wave links. Unfortunately, acquiring channel knowledge is a source of training overhead. In this paper, we propose a CE method leveraging measurements at sub 6-Ghz frequencies in order to reduce the training overhead. This solution extracts spatial information from a sub 6-Ghz channel using a virtual channel transformation, such as the searching space is reduced to the information provided by the low frequency channel. In a second stage, a multicell system and its interference between cells is analyzed, proposing a coalitional game to deal with the intercell interference. In the single cell case, we analyze the proposed method in different SNR scenarios, the computational complexity and over user equipment (UE) mobility environment. Finally, we analyze how the coalitional game improves the throughput and its performance over UE in mobility cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang J, Zhu H, Gomes NJ (2012) Distributed antenna systems for mobile communications in high speed trains. IEEE J Sel Area Commun 30(4):675–683

    Article  Google Scholar 

  2. Hassibi B, Hochwald BM (2003) How much training is needed in multiple-antenna wireless links? IEEE Trans Inf Theory 49(4):951–963

    Article  Google Scholar 

  3. Heath J, Robert W (2013) What is the role of MIMO in future cellular networks: massive? Presentation delivered at IEEE international conference on communications (ICC)

    Google Scholar 

  4. Maschietti F, Gesbert D, Kerret P, Wymeersch H (2013) Robust location-aided beam alignment in millimeter wave massive MIMO. In: GLOBECOM 2017-2017 IEEE global communications conference, pp 1–6

    Google Scholar 

  5. Hur S, Kim T, Love DJ, Krogmeier JV, Thomas TA, Ghosh A (2013) Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun 61(10):4391–4403

    Article  Google Scholar 

  6. Alkhateeb A, El Ayach O, Leus G, Robert RW (2014) Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J Sel Top Signal Process 8(5):831–846

    Article  Google Scholar 

  7. Alkhateeb A, Ayach OE, Leus G, Heath RW (2013) Hybrid precoding for millimeter wave cellular systems with partial channel knowledge. In: Proceedings of information theory and applications workshop (ITA), February 2013, p 15

    Google Scholar 

  8. Ayach OE, Rajagopal S, Surra SA, Pi Z, Heath RW (2013) Spatially sparse precoding in millimeter wave MIMO Systems. In: Proceedings of information theory and applications workshop (ITA), February 2013, p 15

    Google Scholar 

  9. Wang Y, Venugopal K, Andreas F, Heath RW Jr (2017) Analysis of urban millimeter wave microcellular networks. IEEE Trans Veh Technol 66(10):8964–8978

    Article  Google Scholar 

  10. Va V, Heath RW Jr (2017) Basic relationship between channel coherence time and beamwidth in vehicular channels. IEEE Trans Veh Technol 66(10):8964–8978

    Google Scholar 

  11. Garcia N, Wymeersch H, Strom EG, Slock D (2016) Location-aided mm-wave channel estimation for vehicular communication. In: IEEE 17th international workshop on signal processing advances in wireless communications (SPAWC), July 2016, pp 1–5

    Google Scholar 

  12. Ali A, Gonzalez-Prelcic N, Heath RW Jr (2016) Estimating millimeter wave channels using out-of-band measurements. In: Proceedings of information theory and applications (ITA) workshop, February 2016, p 15

    Google Scholar 

  13. Ali A, Gonzalez-Prelcic N, Heath RW Jr (2018) Millimeter wave beam-selection using out-of-band spatial information. IEEE Trans Wirel Commun 17:1038–1052

    Article  Google Scholar 

  14. Sayeed AM (2002) Deconstructing multiantenna fading channels. IEEE Trans Signal Process 50(10):2563–2597

    Article  Google Scholar 

  15. Rappaport TS, Sun S, Mayzus R, Zhao H, Azar K, Wang GN, Wong JK, Schulz M, Samini F Gutierrez (2013) Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1:335–349

    Article  Google Scholar 

  16. Sayeed AM, Raghavan V (2016) A fast channel estimation approach for millimeter-wave massive MIMO systems. In: Proceedings of IEEE global conference on signal and information processing, Arlington, VA, USA

    Google Scholar 

  17. Va V, Choi J, Shimizu T, Bansal G, Heath RW Jr. Inverse multipath fingerprinting for millimeter wave V2I beam alignmen. IEEE Access

    Google Scholar 

  18. Palacios P, Castro A (2018) Cognitive radio simulator for mobile networks: design and implementation. i-manager’s J Commun Eng Syst 7(2):1–9

    Article  Google Scholar 

  19. Saad W, Han Z, Debbah M, Hjorungnes A, Basar T (2009) A distributed coalition formation framework for fair user cooperation in wireless networks. IEEE Trans Wirel Commun 8(9):4580–4593

    Article  Google Scholar 

  20. Pantisano F, Ghaboosi K, Bennis M, Verdone R (2010) Interference avoidance via resource scheduling in TDD underlay femtocells. In: Proceedings of the IEEE PIMRC workshop on indoor and outdoor femto cells, Istambul, Turkey, September 2010

    Google Scholar 

  21. Zhang Z, Song L, Han Z, Saad W (2014) Coalitional games with overlapping coalitions for interference management in small cell networks. IEEE Trans Wirel Commun 13(5):2659–2668

    Article  Google Scholar 

  22. Huang C-Y, Sjostrom T (2006) Implementation of the recursive core for partition function form games. J Math Econ 42:771–793

    Article  MathSciNet  Google Scholar 

  23. Pantisano F, Bennis M, Saad W, Verdone R, Latva-Aho M (2011) Coalition formation games for femtocell interference management: a recursive core approach. In: Proceedings of 2011 IEEE wireless communications and networking conference, Cancun, Quintana Roo, Mexico, March 2011, p 2831

    Google Scholar 

  24. Bogomonlaia A, Jackson M (2002) The stability of hedonic coalition structures. Games Econ Behav 38:201–230

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pablo Palacios , José Julio Freire or Milton Román-Cañizáres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palacios, P., Freire, J.J., Román-Cañizáres, M. (2019). Millimeter-Wave Channel Estimation Using Coalitional Game. In: Botto-Tobar, M., Barba-Maggi, L., González-Huerta, J., Villacrés-Cevallos, P., S. Gómez, O., Uvidia-Fassler, M. (eds) Information and Communication Technologies of Ecuador (TIC.EC). TICEC 2018. Advances in Intelligent Systems and Computing, vol 884. Springer, Cham. https://doi.org/10.1007/978-3-030-02828-2_1

Download citation

Publish with us

Policies and ethics