Ventilation of nZEB

  • Sašo MedvedEmail author
  • Suzana Domjan
  • Ciril Arkar
Part of the Springer Tracts in Civil Engineering book series (SPRTRCIENG)


Ventilation is the process of the dilution of indoor air pollutants by exchanging the indoor air with the exterior air. This can be done because, in general, outdoor air is less polluted that indoor air. With ventilation, the amount of indoor air pollutants must be lowered to a level that does not affect the perceived quality of the indoor environment, decrease the productivity or influence the health of residents. Several hundreds of pollutants can be found in indoor air because they are emitted from human bodies, animals, plants, as well as building materials and processes. Water vapour, CO2, CO, solid particles and odours are the most indicative pollutants in residential buildings. Requirements and methods for the determination of amount of supply fresh air needed to reach the desired category of indoor air quality (IAQ) are presented in Chap.  1. In this chapter, the principles and types of ventilation, design of ventilation systems, energy performance indicators and measures for increasing energy efficiency of ventilation systems are presented. When determining the energy needs for ventilation, as described in Sect.  5.3, it is assumed that supply air is delivered into the building at the indoor air set-point temperature (during heating and cooling periods). Consequently, energy needs for ventilation are included in the energy needs for heating (QNH) and cooling (QNC) and the final energy demand for ventilation is only related to the energy use of electricity for the operation of the fans in the case of mechanical ventilation. Ventilation systems can be extended to air-heating or air-cooling systems. In such systems, heat is delivered or extracted by air that is supplied into the building (rooms) at higher (up to ~40 °C) or lower temperatures (down to ~18 °C) in comparison to the indoor air set-point temperature. Air-conditioning systems are another type of extended ventilation systems using air as a heat transfer fluid for heating and cooling. In contrast to air-heating and air-cooling systems, such systems also regulate the humidity of the indoor air. Besides providing the required indoor air quality, the process of ventilation can be used for the removal of the heat of internal sources and solar radiation to cooling the building’s thermal mass during summer nights to avoid overheating and decrease the energy needs for cooling the building. It is common for all those processes that a much larger quantity of supply air is required in comparison to IAQ requirements. Only “pure” ventilation systems will be presented in this chapter.


  1. Cucumo M et al (2008) A one-dimensional transient analytical model for earth-to-air heat exchangers, taking into account condensation phenomena and thermal perturbation from the upper free surface as well as around the buried pipes. Int J Heat Mass Transf 51(3–4):506–516CrossRefGoogle Scholar
  2. Harvey LDD (2006) A handbook on low-energy buildings and district-energy systems, fundamentals, techniques and examples. Earthscan, LondonGoogle Scholar
  3. Jayamaha L (2007) Energy-efficient building systems green strategies for operation and maintenance. McGraw-HillGoogle Scholar
  4. Kleiven T (2004) Natural ventilation in buildings—architecture concept, consequences and possibilities. EuroSunGoogle Scholar
  5. Limam K et al (2011) Education package ventilation, Lecture 2: Natural ventilation. Master and post graduate education and training in multi-disciplinary teams implementing EPBD and beyond—IDES-EDU, IEE/09/631/SI2.558225Google Scholar
  6. Mc Quiston FC, Parker JD, Spitler JD (2005) Heating, ventilating, and air conditioning—analysis and design. WileyGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations