Skip to main content

Yeast Activities Involved in Carbon and Nitrogen Cycles in Antarctica

  • Chapter
  • First Online:
The Ecological Role of Micro-organisms in the Antarctic Environment

Abstract

Antarctica and sub-Antarctic regions are characterized by extreme conditions for life such as low temperatures and nutrient availability, high solar irradiation, and dryness; however, microorganisms from the three domains of life have been found as common inhabitants of soils and waters from those zones. Despite bacteria being the most numerous microorganisms in those habitats, a great diversity of psychrotrophic and psychrophilic yeasts have been also isolated and described. Yeasts, as chemoheterotrophic microorganisms, are involved in the recycling and mineralization of organic matter, playing an important role in carbon cycle. The range of organic substrates that they can degrade is wide. Their ability to produce extracellular hydrolytic enzymes involved in the breakdown of natural organic polymers has been well documented. Moreover, they can also use other substrates as n-alkanes or polyphenolic compounds as a sole carbon and energy source, so they could play a role in bioremediation in human-impacted areas. Most yeast obtain their energy by aerobic respiration; however, in anaerobic conditions, some of them carry out fermentation or anaerobic respiration. The use of nitrate or nitrite as the final electron acceptor provides nitrous oxide (a greenhouse gas) as an end product. Thus, those yeasts can be considered as denitrifying microorganisms playing an important role in the nitrogen cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aislabie, J., McLeod, M., & Fraser, R. (1998). Potential for biodegradation of hydrocarbons in soil from the Ross Dependency, Antarctica. Applied Microbiology and Biotechnology, 49, 210–214. https://doi.org/10.1007/s002530051160.

    Article  CAS  Google Scholar 

  • Arenz, B. E., Held, B. W., Jurgens, J. A., Farrell, R. L., & Blanchette, R. A. (2006). Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biology and Biochemistry, 38, 3057–3064. https://doi.org/10.1016/j.soilbio.2006.01.016.

    Article  CAS  Google Scholar 

  • Arrarte, E., Garmendia, G., Rossini, C., Wisniewski, M., & Vero, S. (2017). Volatile organic compounds produced by Antarctic strains of Candida sake play a role in the control of postharvest pathogens of apples. Biological Control, 109, 14–20.

    Article  CAS  Google Scholar 

  • Ballester-Tomás, L., Prieto, J. A., Gil, J. V., Baeza, M., & Randez-Gil, F. (2017). The Antarctic yeast Candida sake: Understanding cold metabolism impact on wine. International Journal of Food Microbiology, 245, 59–65. https://doi.org/10.1016/j.ijfoodmicro.2017.01.009.

    Article  CAS  PubMed  Google Scholar 

  • Bernhard, A. (2010). The nitrogen cycle: Processes. Nat Educ Knowl, 2, 1–8.

    Google Scholar 

  • Bhutada, G., Kavšček, M., Ledesma-Amaro, R., Thomas, S., Rechberger, G. N., Nicaud, J. M., & Natter, K. (2017). Sugar versus fat: Elimination of glycogen storage improves lipid accumulation in Yarrowia lipolytica. FEMS Yeast Research, 17, fox020. https://doi.org/10.1093/femsyr/fox020.

    Article  CAS  PubMed Central  Google Scholar 

  • Białkowska, A. M., Szulczewska, K. M., Krysiak, J., Florczak, T., Gromek, E., Kassassir, H., Kur, J., & Turkiewicz, M. (2017). Genetic and biochemical characterization of yeasts isolated from Antarctic soil samples. Polar Biology, 40, 1787–1803.

    Article  Google Scholar 

  • Brizzio, S., Turchetti, B., De Garcia, V., Libkind, D., Buzzini, P., & Van Broock, M. (2007). Extracellular enzymatic activities of basidiomycetous yeasts isolated from glacial and subglacial waters of Northwest Patagonia (Argentina). Canadian Journal of Microbiology, 53, 519–525.

    Article  CAS  Google Scholar 

  • Buzzini, P., & Margesin, R. (2014). Cold-adapted yeasts: A lesson from the cold and a challenge for the XXI century. In Cold-adapted yeasts: Biodiversity, adaptation strategies and biotechnological significance (pp. 3–22). Berlin: Springer.

    Chapter  Google Scholar 

  • Buzzini, P., Branda, E., Goretti, M., & Turchetti, B. (2012). Psychrophilic yeasts from worldwide glacial habitats: Diversity, adaptation strategies and biotechnological potential. FEMS Microbiology Ecology, 82, 217–241.

    Article  CAS  Google Scholar 

  • Buzzini, P., Turk, M., Perini, L., Turchetti, B., & Gunde-Cimerman, N. (2017). Yeasts in polar and subpolar habitats. In Yeasts in natural ecosystems: Diversity (pp. 331–365). Berlin: Springer.

    Chapter  Google Scholar 

  • Carrasco, M., Rozas, J. M., Barahona, S., Alcaíno, J., Cifuentes, V., & Baeza, M. (2012). Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiology, 12, 251. https://doi.org/10.1186/1471-2180-12-251.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carrasco, M., Villarreal, P., Barahona, S., Alcaíno, J., Cifuentes, V., & Baeza, M. (2016). Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiology, 16, 21. https://doi.org/10.1186/s12866-016-0640-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Vandelle, E., Bellin, D., & Delledonne, M. (2014). Nitric oxide detection and function of nitric oxide during the hypersensitive response in Arabidopsis thaliana: Where there’s a will there’s a way. Nitric Oxide, 43, 81–88. https://doi.org/10.1016/j.niox.2014.06.008.

    Article  CAS  PubMed  Google Scholar 

  • Connell, L., Redman, R., Craig, S., Scorzetti, G., Iszard, M., & Rodriguez, R. (2008). Diversity of soil yeasts isolated from South Victoria Land, Antarctica. Microbial Ecology, 56, 448–459. https://doi.org/10.1007/s00248-008-9363-1.

    Article  CAS  PubMed  Google Scholar 

  • Connell, L. B., Rodriguez, R. R., Redman, R. S., & Dalluge, J. J. (2014). Cold-adapted yeasts in Antarctic deserts. In Cold-adapted yeasts (pp. 75–98). Berlin: Springer.

    Chapter  Google Scholar 

  • Corsolini, S. (2009). Industrial contaminants in Antarctic biota. Journal of Chromatography. A, 1216, 598–612.

    Article  CAS  Google Scholar 

  • Crenshaw, C. L., Lauber, C., Sinsabaugh, R. L., & Stavely, L. K. (2008). Fungal control of nitrous oxide production in semiarid grassland. Biogeochemistry, 87, 17–27. https://doi.org/10.1007/s10533-007-9165-4.

    Article  CAS  Google Scholar 

  • Cui, M., Ma, A., Qi, H., Zhuang, X., & Zhuang, G. (2015). Anaerobic oxidation of methane: An “active” microbial process. Microbiologyopen, 4, 1–11.

    Article  Google Scholar 

  • De García, V., Brizzio, S., Libkind, D., Buzzini, P., & Van Broock, M. (2007). Biodiversity of cold-adapted yeasts from glacial meltwater rivers in Patagonia, Argentina. FEMS Microbiology Ecology, 59, 331–341.

    Article  Google Scholar 

  • de Jesus H. E., & Peixoto, R. S. (2015) Bioremediation in Antarctic soils. Journal of Petroleum and Environmental Biotechnology, 6. https://doi.org/10.4172/2157-7463.1000248.

  • Domínguez De María, P., Carboni-Oerlemans, C., Tuin, B., Bargeman, G., Van Der Meer, A., & Van Gemert, R. (2005). Biotechnological applications of Candida antarctica lipase A: State-of-the-art. Journal of Molecular Catalysis B: Enzymatic, 37, 36–46. https://doi.org/10.1016/j.molcatb.2005.09.001.

    Article  CAS  Google Scholar 

  • Duarte, A. W. F., Dayo-Owoyemi, I., Nobre, F. S., Pagnocca, F. C., Chaud, L. C. S., Pessoa, A., Felipe, M. G. A., & Sette, L. D. (2013). Taxonomic assessment and enzymes production by yeasts isolated from marine and terrestrial Antarctic samples. Extremophiles, 17, 1023–1035. https://doi.org/10.1007/s00792-013-0584-y.

    Article  CAS  PubMed  Google Scholar 

  • Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., Lafontaine, I., De Montigny, J., Marck, C., Neuvéglise, C., & Talla, E. (2004). Genome evolution in yeasts. Nature, 430, 35.

    Article  Google Scholar 

  • Farese, R. V., Jr., & Walther, T. C. (2009). Lipid droplets finally get a little RESPECT. Cell, 139, 855–860.

    Article  CAS  Google Scholar 

  • Fernández, P. M., Martorell, M. M., Blaser, M. G., Ruberto, L. A. M., de Figueroa, L. I. C., & Mac Cormack, W. P. (2017). Phenol degradation and heavy metal tolerance of Antarctic yeasts. Extremophiles, 21, 445–457. https://doi.org/10.1007/s00792-017-0915-5.

    Article  CAS  PubMed  Google Scholar 

  • Gorfer, M., Blumhoff, M., Klaubauf, S., Urban, A., Inselsbacher, E., Bandian, D., Mitter, B., Sessitsch, A., Wanek, W., & Strauss, J. (2011). Community profiling and gene expression of fungal assimilatory nitrate reductases in agricultural soil. The ISME Journal, 5, 1771–1783. https://doi.org/10.1038/ismej.2011.53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorfer, M., Klaubauf, S., Berger, H., & Strauss, J. (2014). The fungal contribution to the nitrogen cycle in agricultural soils. In Metagenomics microbial nitrogen cycle: Theory, methods and applications (pp. 209–225). Norfolk: Caister Academic Press.

    Google Scholar 

  • Greben, H. A., Joubert, L. M., Tjatji, M. P., Whites, H. E., & Botha, A. (2007). Biological nitrate removal from synthetic wastewater using a fungal consortium in one stage bioreactors. Water SA, 33, 285–290. https://doi.org/10.4314/wsa.v33i2.49094.

    Article  CAS  Google Scholar 

  • Guadalupe-Medina, V., Wisselink, H. W., Luttik, M. A., De Hulster, E., Daran, J. M., Pronk, J. T., & Van Maris, A. J. A. (2013). Carbon dioxide fixation by Calvin-Cycle enzymes improves ethanol yield in yeast. Biotechnology for Biofuels, 6, 125. https://doi.org/10.1186/1754-6834-6-125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayatsu, M., Tago, K., & Saito, M. (2008). Various players in the nitrogen cycle: Diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Science & Plant Nutrition, 54, 33–45.

    Article  CAS  Google Scholar 

  • Herrera, L. M., García-Laviña, C. X., Marizcurrena, J. J., Volonterio, O., de León, R. P., & Castro-Sowinski, S. (2017). Hydrolytic enzyme-producing microbes in the Antarctic oligochaete Grania sp.(Annelida). Polar Biology, 40(4), 947–953.

    Article  Google Scholar 

  • IPCC. (2007). Intergovernmental panel on climate change. Summary for policy makers.

    Google Scholar 

  • Jordan, F. L., Cantera, J. J. L., Fenn, M. E., & Stein, L. Y. (2005). Autotrophic ammonia-oxidizing bacteria contribute minimally to nitrification in a nitrogen-impacted forested ecosystem. Applied and Environmental Microbiology, 71, 197–206. https://doi.org/10.1128/AEM.71.1.197-206.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasana, R. C., & Gulati, A. (2011). Cellulases from psychrophilic microorganisms: A review. Journal of Basic Microbiology, 51, 572–579.

    Article  CAS  Google Scholar 

  • Kavanagh, K. (2005). Fungal fermentation systems and products. In Fungi: Biology and applications. Hoboken: Wiley.

    Chapter  Google Scholar 

  • Kneip, C., Lockhart, P., Voß, C., & Maier, U. G. (2007). Nitrogen fixation in eukaryotes – New models for symbiosis. BMC Evolutionary Biology, 7, 55.

    Article  Google Scholar 

  • Kregiel, D. (2008). Physiology and metabolism of Crabtree-negative yeast Debaryomyces occidentalis. Food Chem Biotechnol, 72, 35–44.

    CAS  Google Scholar 

  • Kurtzman, C. P., Fell, J. W., & Boekhout, T. (2011). The yeasts: A taxonomic study. New York: Elsevier.

    Chapter  Google Scholar 

  • Laughlin, R. J., & Stevens, R. J. (2002). Evidence for fungal dominance of denitrification and codenitrification in a grassland soil. Soil Science Society of America Journal, 66, 1540. https://doi.org/10.2136/sssaj2002.1540.

    Article  CAS  Google Scholar 

  • Lawley, B., Ripley, S., Bridge, P., & Convey, P. (2004). Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. American Society for Microbiology, 70, 5963–5972. https://doi.org/10.1128/AEM.70.10.5963.

    Article  CAS  Google Scholar 

  • Lo Giudice, A., Casella, P., Bruni, V., & Michaud, L. (2013). Response of bacterial isolates from Antarctic shallow sediments towards heavy metals, antibiotics and polychlorinated biphenyls. Ecotoxicology, 22, 240–250. https://doi.org/10.1007/s10646-012-1020-2.

    Article  CAS  PubMed  Google Scholar 

  • Madigan, M. T., Martinko, J. M., Stahl, D., & Clark, D. P. (2015). Brock biology of microorganisms. New York: Pearson.

    Google Scholar 

  • Martinez, A., Cavello, I., Garmendia, G., Rufo, C., Cavalitto, S., & Vero, S. (2016). Yeasts from sub-Antarctic region: Biodiversity, enzymatic activities and their potential as oleaginous microorganisms. Extremophiles, 20, 759–769. https://doi.org/10.1007/s00792-016-0865-3.

    Article  CAS  PubMed  Google Scholar 

  • Matsui, M., Kawamata, A., Kosugi, M., Imura, S., & Kurosawa, N. (2016). Diversity of proteolytic microbes isolated from Antarctic freshwater lakes and characteristics of their cold-active proteases. Polar Science, 13, 82–90.

    Article  Google Scholar 

  • Mayer, A. M., & Staples, R. C. (2002). Laccase: New functions for an old enzyme. Phytochemistry, 60, 551–565.

    Article  CAS  Google Scholar 

  • McNamara, J. T., Morgan, J. L. W., & Zimmer, J. (2015). A molecular description of cellulose biosynthesis. Annual Review of Biochemistry, 84, 895–921. https://doi.org/10.1146/annurev-biochem-060614-033930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melick, D. R., & Seppelt, R. D. (1992). Loss of soluble carbohydrates and changes in freezing point of Antarctic bryophytes after leaching and repeated freeze-thaw cycles. Antarctic Science, 4, 399–404. https://doi.org/10.1017/S0954102092000592.

    Article  Google Scholar 

  • Melick, D. R., & Seppelt, R. D. (1994). The effect of hydration on carbohydrate levels, pigment content and freezing point of Umbilicaria decussata at a continental Antarctic locality. Cryptogamic Botany, 4, 212–217.

    Google Scholar 

  • Melick, D. R., Hovenden, M. J., & Seppelt, R. D. (1994). Phytogeography of bryophyte and lichen vegetation in the Windmill Islands, Wilkes Land, continental Antarctica. Vegetation, 111, 71–87. https://doi.org/10.1007/BF00045578.

    Article  Google Scholar 

  • Merico, A., Sulo, P., Piškur, J., & Compagno, C. (2007). Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. The FEBS Journal, 274, 976–989. https://doi.org/10.1111/j.1742-4658.2007.05645.x.

    Article  CAS  PubMed  Google Scholar 

  • Moliné, M., Libkind, D., Van Broock, M., & Rosa, C. A. (2011). The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctic. Brazilian Journal of Microbiology, 42, 937–947.

    Article  Google Scholar 

  • Mothapo, N., Chen, H., Cubeta, M. A., Grossman, J. M., Fuller, F., & Shi, W. (2015). Phylogenetic, taxonomic and functional diversity of fungal denitrifiers and associated N2O production efficacy. Soil Biology and Biochemistry, 83, 160–175.

    Article  CAS  Google Scholar 

  • Pereyra, V., Martinez, A., Rufo, C., & Vero, S. (2014). Oleaginous yeasts form Uruguay and Antarctica as renewable raw material for diodiesel production. American Journal of Bioscience, 2, 251. https://doi.org/10.11648/j.ajbio.20140206.20.

    Article  CAS  Google Scholar 

  • Pfeiffer, T., & Morley, A. (2014). An evolutionary perspective on the Crabtree effect. Frontiers in Molecular Biosciences, 1, 1–6. https://doi.org/10.3389/fmolb.2014.00017.

    Article  CAS  Google Scholar 

  • Phillips, R. L., Song, B., McMillan, A. M. S., Grelet, G., Weir, B. S., Palmada, T., & Tobias, C. (2016). Chemical formation of hybrid di-nitrogen calls fungal codenitrification into question. Scientific Reports, 6, 39077. https://doi.org/10.1038/srep39077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramli, A. N. M., Mahadi, N. M., Rabu, A., Murad, A. M. A., Bakar, F. D. A., & Illias, R. M. (2011). Molecular cloning, expression and biochemical characterisation of a cold-adapted novel recombinant chitinase from Glaciozyma antarctica PI12. Microbial Cell Factories, 10, 94. https://doi.org/10.1186/1475-2859-10-94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, S., Chan, Y., Lacap, D. C., Hyde, K. D., Pointing, S. B., & Farrell, R. L. (2012). Low-diversity fungal assemblage in an Antarctic dry valleys soil. Polar Biology, 35, 567–574. https://doi.org/10.1007/s00300-011-1102-2.

    Article  Google Scholar 

  • Rashid, F. A. A., Rahim, R. A., & Ibrahim, D. (2010). Identification of lipase-producing psychrophilic yeast, Leucosporidium sp. Internet Journal of Microbiology, 9.

    Google Scholar 

  • Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86, 807–815.

    Article  CAS  Google Scholar 

  • Rovati, J. I., Pajot, H. F., Ruberto, L., Mac Cormack, W., & Figueroa, L. I. C. (2013). Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica). Yeast, 30, 459–470. https://doi.org/10.1002/yea.2982.

    Article  CAS  PubMed  Google Scholar 

  • Selbmann, L., de Hoog, G. S., Zucconi, L., Isola, D., Ruisi, S., Gerrits van den Ende, A. H. G., Ruibal, C., De Leo, F., Urzì, C., & Onofri, S. (2008). Drought meets acid: Three new genera in a dothidealean clade of extremotolerant fungi. Studies in Mycology, 61, 1–20. https://doi.org/10.3114/sim.2008.61.01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaji, S., & Prasad, G. S. (2009). Antarctic yeasts: Biodiversity and potential applications. In Yeast biotechnology: Diversity and applications (pp. 3–18). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Shoun, H., Fushinobu, S., Jiang, L., Kim, S.-W., & Wakagi, T. (2012). Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philosophical Transactions of the Royal Society B Biological Sciences, 367, 1186–1194. https://doi.org/10.1098/rstb.2011.0335.

    Article  CAS  PubMed Central  Google Scholar 

  • Shouns, H., & Tanimoto, T. (1991). Denitrification by the fungus Fusarium oxysporum and involvement nitrite reduction * of cytochrome P-450 in the respiratory. Biochemistry, 266, 11078–11082.

    Google Scholar 

  • Simek, M. (2000). Nitrification in soil – Terminology and methodology (review). Rostl Vyroba, 46, 385–395.

    Google Scholar 

  • Singh, B., & Satyanarayana, T. (2011). Microbial phytases in phosphorus acquisition and plant growth promotion. Physiology and Molecular Biology of Plants, 17, 93–103.

    Article  CAS  Google Scholar 

  • Siverio, J. M. (2002). Assimilation of nitrate by yeasts. FEMS Microbiology Reviews, 26, 277–284.

    Article  CAS  Google Scholar 

  • Slot, J. C., & Hibbett, D. S. (2007). Horizontal transfer of a nitrate assimilation gene cluster and ecological transitions in fungi: A phylogenetic study. PLoS One, 2, e1097. https://doi.org/10.1371/journal.pone.0001097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slot, J. C., Hallstrom, K. N., Matheny, P. B., & Hibbett, D. S. (2007). Diversification of NRT2 and the origin of its fungal homolog. Molecular Biology and Evolution, 24, 1731–1743. https://doi.org/10.1093/molbev/msm098.

    Article  CAS  PubMed  Google Scholar 

  • Souza, C. P., Almeida, B. C., Colwell, R. R., & Rivera, I. N. G. (2011). The importance of chitin in the marine environment. Marine Biotechnology, 13, 823–830.

    Article  CAS  Google Scholar 

  • Spott, O., Russow, R., & Stange, C. F. (2011). Formation of hybrid N2O and hybrid N2due to codenitrification: First review of a barely considered process of microbially mediated N-nitrosation. Soil Biology and Biochemistry, 43, 1995–2011.

    Article  CAS  Google Scholar 

  • Stein, L. Y. (2011). Heterotrophic nitrification and nitrifier denitrification. In Nitrification (pp. 95–114). Washington, DC: ASM Press.

    Chapter  Google Scholar 

  • Szczesna Antczak, M., Kubiak, A., Antczak, T., & Bielecki, S. (2009). Enzymatic biodiesel synthesis – Key factors affecting efficiency of the process. Renewable Energy, 34, 1185–1194. https://doi.org/10.1016/j.renene.2008.11.013.

    Article  CAS  Google Scholar 

  • Takasaki, K., Shoun, H., Yamaguchi, M., Takeo, K., Nakamura, A., Hoshino, T., & Takaya, N. (2004). Fungal ammonia fermentation, a novel metabolic mechanism that couples the dissimilatory and assimilatory pathways of both nitrate and ethanol. ASBMB, 279, 12414–12420. https://doi.org/10.1074/jbc.M313761200.

    Article  Google Scholar 

  • Thomas-Hall, S. R., Turchetti, B., Buzzini, P., Branda, E., Boekhout, T., Theelen, B., & Watson, K. (2009). Cold-adapted yeasts from Antarctica and the Italian Alps-description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles, 14, 47–59. https://doi.org/10.1007/s00792-009-0286-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuruta, S., Takaya, N., Zhang, L., Shoun, H., Kimura, K., Hamamoto, M., & Nakase, T. (1998). Denitrification by yeasts and occurrence of cytochrome P450nor in Trichosporon cutaneum. FEMS Microbiology Letters, 168, 105–110.

    Article  CAS  Google Scholar 

  • Turchetti, B., Buzzini, P., Goretti, M., Branda, E., Diolaiuti, G., D’Agata, C., Smiraglia, C., & Vaughan-Martini, A. (2008). Psychrophilic yeasts in glacial environments of alpine glaciers. FEMS Microbiology Ecology, 63, 73–83. https://doi.org/10.1111/j.1574-6941.2007.00409.x.

    Article  CAS  PubMed  Google Scholar 

  • Turkiewicz, M., Pazgier, M., Kalinowska, H., & Bielecki, S. (2003). A cold-adapted extracellular serine proteinase of the yeast Leucosporidium antarcticum. Extremophiles, 7, 435–442. https://doi.org/10.1007/s00792-003-0340-9.

    Article  CAS  PubMed  Google Scholar 

  • Uetake, J., Yoshimura, Y., Nagatsuka, N., & Kanda, H. (2012). Isolation of oligotrophic yeasts from supraglacial environments of different altitude on the Gulkana Glacier (Alaska). FEMS Microbiology Ecology, 82, 279–286. https://doi.org/10.1111/j.1574-6941.2012.01323.x.

    Article  CAS  PubMed  Google Scholar 

  • Vaz, A. B. M., Rosa, L. H., Vieira, M. L. A., de Garcia, V., Brandão, L. R., Teixeira, L. C. R., Moliné, M., Libkind, D., Van Broock, M., & Rosa, C. A. (2011). The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica. Brazilian Journal of Microbiology, 42, 937–947.

    Article  CAS  Google Scholar 

  • Vishniac, H. S. (2006). Yeast biodiversity in the Antarctic. In Biodiversity and ecophysiology (pp. 419–440). London: Springer. https://doi.org/10.1007/3-540-30985-3_16.

    Chapter  Google Scholar 

  • Walton, D. W. H. (1985). Cellulose decomposition and its relationship to nutrient cycling at South Georgia (pp. 192–199). New York: Antarctica Nutrient Cycles and Food Webs. https://doi.org/10.1007/978-3-642-82275-9_27.

    Book  Google Scholar 

  • Ward, B. B. (2008). Nitrification in marine systems. In Nitrogen in the marine environment (pp. 199–261). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Weinstein, R. N., Montiel, P. O., & Johnstone, K. (2000). Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia, 92, 222–229. https://doi.org/10.2307/3761554.

    Article  CAS  Google Scholar 

  • Wynn-Williams, D. D. (1990). Ecological aspects of Antarctic microbiology. Advances in Microbial Ecology, 11, 71–146. https://doi.org/10.1007/978-1-4684-7612-5_3.

    Article  Google Scholar 

  • Yergeau, E., Kang, S., He, Z., Zhou, J., & Kowalchuk, G. A. (2007a). Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect126. IsmeJ, 1, 163–179.

    Article  CAS  Google Scholar 

  • Yergeau, E., Newsham, K. K., Pearce, D. A., & Kowalchuk, G. A. (2007b). Patterns of bacterial diversity across a range of Antarctic terrestrial habitats. Environmental Microbiology, 9, 2670–2682. https://doi.org/10.1111/j.1462-2920.2007.01379.x.

    Article  CAS  PubMed  Google Scholar 

  • Zalar, P., & Gunde-Cimerman, N. (2014). Cold-adapted yeasts in arctic habitats. In Cold-adapted yeasts: Biodiversity, adaptation strategies and biotechnological significance (pp. 49–74). Berlin: Springer.

    Chapter  Google Scholar 

  • Zalar, P., Gostinčar, C., de Hoog, G. S., Uršič, V., Sudhadham, M., & Gunde-Cimerman, N. (2008). Redefinition of Aureobasidium pullulans and its varieties. Studies in Mycology, 61, 21–38. https://doi.org/10.3114/sim.2008.61.02.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Müller, C., Zhu, T., Cheng, Y., & Cai, Z. (2011). Heterotrophic nitrification is the predominant NO3- production mechanism in coniferous but not broad-leaf acid forest soil in subtropical China. Biology and Fertility of Soils, 47, 533–542. https://doi.org/10.1007/s00374-011-0567-z.

    Article  CAS  Google Scholar 

  • Zhou, Z., Takaya, N., Nakamura, A., Yamaguchi, M., Takeo, K., & Shoun, H. (2002). Ammonia fermentation, a novel anoxic metabolism of nitrate by fungi. The Journal of Biological Chemistry, 277, 1892–1896. https://doi.org/10.1074/jbc.M109096200.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Vero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vero, S., Garmendia, G., Martínez-Silveira, A., Cavello, I., Wisniewski, M. (2019). Yeast Activities Involved in Carbon and Nitrogen Cycles in Antarctica. In: Castro-Sowinski, S. (eds) The Ecological Role of Micro-organisms in the Antarctic Environment. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02786-5_3

Download citation

Publish with us

Policies and ethics