Skip to main content

Part of the book series: Springer Polar Sciences ((SPPS))

Abstract

Microbes are able to colonize almost every part on Earth where liquid water is available, and rocks are not an exception. Moreover, in extremely dry and harsh places, like some found in Antarctica, rocks may represent the main refuge for life. Despite its relevance, our understanding of lithobiontic communities is just at the beginnings. In this chapter we present a brief history of research on Antarctic lithobiontic communities and summarize recent advances in our understanding of this fascinating microbial world. We point up methodological approximations used for its characterization, microbial diversity of lithobionts, and the identification of functional traits that drive lithobiont survival and community assembly. These extreme environmental niches can be considered a barely explored source of microbial life whose function in global processes such as global climate changes remains unclear. Understanding the adaptations that allow lithobionts to successfully compete in their environment is a quest for understanding the fundamentals of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albi, T., & Serrano, A. (2016). Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World Journal of Microbiology and Biotechnology, 32(2), 27.

    Article  Google Scholar 

  • Ascaso, C., & Wierzchos, J. (2002). New approaches to the study of Antarctic lithobiontic microorganisms and their inorganic traces, and their application in the detection of life in Martian rocks. International Microbiology, 5(4), 215–222.

    Article  CAS  Google Scholar 

  • Ascaso, C., Sancho, L. G., & Rodríguez-Pascual, C. (1990). The weathering action of saxicolous lichens in maritime Antarctica. Polar Biology, 11, 33–39.

    Article  Google Scholar 

  • Broady, P. A. (1981a). The ecology of chasmolithic algae at coastal locations of Antarctica. Phycologia, 20(3), 259–272.

    Article  Google Scholar 

  • Broady, P. A. (1981b). Ecological and taxonomic observations on subaerial epilithic algae from Princess Elizabeth Land and Mac.Robertson Land, Antarctica. British Phycological Journal, 16(3), 257–266.

    Article  Google Scholar 

  • Cary, S. C., et al. (2010). On the rocks: The microbiology of Antarctic Dry Valley soils. Nature Reviews. Microbiology, 8(2), 129–138.

    Article  CAS  Google Scholar 

  • Chan, Y., et al. (2013). Functional ecology of an Antarctic Dry Valley. Proceedings of the National Academy of Sciences of the United States of America, 110(22), 8990–8995.

    Article  CAS  Google Scholar 

  • Cowan, D. A., & Tow, L. A. (2004). Endangered antarctic environments. Annual Review of Microbiology, 58, 649–690.

    Article  CAS  Google Scholar 

  • Cowan, D. A., et al. (2010). Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarctic Science, 22(6), 714–720.

    Article  Google Scholar 

  • Cowan, D. A., et al. (2011). Hypolithic communities: Important nitrogen sources in Antarctic desert soils. Environmental Microbiology Reports, 3(5), 581–586.

    Article  CAS  Google Scholar 

  • Crits-Christoph, A., et al. (2016). Phylogenetic and functional substrate specificity for endolithic microbial communities in hyper-arid environments. Frontiers in Microbiology, 7, 301.

    Article  Google Scholar 

  • De Los Ríos, A., Wierzchos, J., & Ascaso, C. (2014). Synthesis. The lithic microbial ecosystems of Antarctica’s McMurdo Dry Valleys. Antarctic Science, 26(5), 459–477.

    Article  Google Scholar 

  • Deming, J. W., & Young, J. N. (2017). The role of exopolysaccharides in microbial adaptation to cold habitats. In R. Margesin (Ed.), Psychrophiles: From biodiversity to biotechnology (pp. 259–284). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Diels, L. (1914). Die Algenvegetation der Südtiroler Dolomitriffe. Ein Beitrag zur Ökologie der Lithophyten. Berichte der Deutschen Botanischen Gesellschaft, 32, 502–526.

    Google Scholar 

  • Dieser, M., Greenwood, M., & Foreman, C. M. (2010). Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arctic, Antarctic, and Alpine Research, 42(4), 396–405.

    Article  Google Scholar 

  • Frederick, J. E., & Snell, H. E. (1988). Ultraviolet radiation levels during the antarctic spring. Science, 241(4864), 438–440.

    Article  CAS  Google Scholar 

  • Friedmann, E. I. (1982). Endolithic microorganisms in the antarctic cold desert. Science, 215(4536), 1045–1053.

    Article  CAS  Google Scholar 

  • Friedmann, E. I., & Kibler, A. P. (1980). Nitrogen economy of endolithic microbial communities in hot and cold deserts. Microbial Ecology, 6(2), 95–108.

    Article  CAS  Google Scholar 

  • Friedmann, E. I., & Ocampo, R. (1976). Endolithic blue-green algae in the dry valleys: Primary producers in the antarctic desert ecosystem. Science, 193(4259), 1247–1249.

    Article  CAS  Google Scholar 

  • Friedmann, E. I., et al. (1993). Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica. Microbial Ecology, 25(1), 51–69.

    Article  CAS  Google Scholar 

  • Friedmann, E. I., Druk, A. Y., & McKay, C. P. (1994). Limits of life and microbial extinction in the antarctic desert. Antarctic Journal of the United States, 29(5), 176–179.

    Google Scholar 

  • Goordial, J., et al. (2016). Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. The ISME Journal, 10(7), 1613–1624.

    Article  Google Scholar 

  • Goordial, J., et al. (2017). Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert. Environmental Microbiology, 19(2), 443–458.

    Article  CAS  Google Scholar 

  • Guillitte, O. (1995). Bioreceptivity: A new concept for building ecology studies. Science of the Total Environment, 167(1), 215–220.

    Article  CAS  Google Scholar 

  • Horowitz, N. H., Cameron, R. E., & Hubbard, J. S. (1972). Microbiology of the dry valleys of Antarctica. Science, 176(4032), 242–245.

    Article  CAS  Google Scholar 

  • Hughes, K. A., & Lawley, B. (2003). A novel Antarctic microbial endolithic community within gypsum crusts. Environmental Microbiology, 5(7), 555–565.

    Article  Google Scholar 

  • de la Torre, J. R., et al. (2003). Microbial diversity of cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 69(7), 3858–3867.

    Article  CAS  Google Scholar 

  • Le, P. T., et al. (2016). Comparative metagenomic analysis reveals mechanisms for stress response in hypoliths from extreme hyperarid deserts. Genome Biology and Evolution, 8(9), 2737–2747.

    Article  CAS  Google Scholar 

  • Lee, C. K., et al. (2012). The inter-valley soil comparative survey: The ecology of Dry Valley edaphic microbial communities. The ISME Journal, 6(5), 1046–1057.

    Article  CAS  Google Scholar 

  • de los Ríos, A., Cary, C., & Cowan, D. (2014). The spatial structures of hypolithic communities in the Dry Valleys of East Antarctica. Polar Biology, 37(12), 1823–1833.

    Article  Google Scholar 

  • Makhalanyane, T. P., et al. (2013). Evidence for successional development in Antarctic hypolithic bacterial communities. The ISME Journal, 7(11), 2080–2090.

    Article  CAS  Google Scholar 

  • Makhalanyane, T. P., Pointing, S. B., & Cowan, D. A. (2014). Lithobionts: Cryptic and refuge niches. In D. A. Cowan (Ed.), Antarctic terrestrial microbiology: Physical and biological properties of Antarctic soils (pp. 163–179). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Marlow, J., Peckmann, J., & Orphan, V. (2015). Autoendoliths: A distinct type of rock-hosted microbial life. Geobiology, 13(4), 303–307.

    Article  CAS  Google Scholar 

  • McKay, C. P., & Friedmann, E. I. (1985). The cryptoendolithic microbial environment in the Antarctic cold desert: Temperature variations in nature. Polar Biology, 4, 19–25.

    Article  CAS  Google Scholar 

  • Moorhead, D. L., et al. (1999). Ecological legacies: Impacts on ecosystems of the McMurdo Dry Valleys. Bioscience, 49(12), 1009–1019.

    Article  Google Scholar 

  • Nienow, J. A., McKay, C. P., & Friedmann, E. I. (1988). The cryptoendolithic microbial environment in the Ross Desert of Antarctica: Light in the photosynthetically active region. Microbial Ecology, 16(3), 271–289.

    Article  Google Scholar 

  • Obbels, D., et al. (2016). Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sor Rondane Mountains, Dronning Maud Land, East Antarctica. FEMS Microbiology Ecology, 92(6), fiw041.

    Article  Google Scholar 

  • Omelon, C. R. (2016). Endolithic microorganisms and their habitats. In H. C (Ed.), Their world: A diversity of microbial environments. Advances in environmental microbiology. Cham: Springer.

    Google Scholar 

  • Órdenes-Aenishanslins, N., et al. (2016). Pigments from UV-resistant Antarctic bacteria as photosensitizers in dye sensitized solar cells. Journal of Photochemistry and Photobiology B: Biology, 162, 707–714.

    Article  Google Scholar 

  • Pointing, S. B., & Belnap, J. (2012). Microbial colonization and controls in dryland systems. Nature Reviews Microbiology, 10(8), 551–562.

    Article  CAS  Google Scholar 

  • Pointing, S. B., et al. (2009). Highly specialized microbial diversity in hyper-arid polar desert. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 19964–19969.

    Article  CAS  Google Scholar 

  • Rogers, A. D. (2007). Evolution and biodiversity of Antarctic organisms: A molecular perspective. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1488), 2191–2214.

    Article  CAS  Google Scholar 

  • Siebert, J., & Hirsch, P. (1988). Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South-Victoria Land). Polar Biology, 9, 37–44.

    Article  CAS  Google Scholar 

  • Smith, M. C., et al. (2000). Sublithic bacteria associated with Antarctic quartz stones. Antarctic Science, 12(2), 177–184.

    Article  Google Scholar 

  • Van Goethem, M. W., et al. (2016). Characterization of bacterial communities in lithobionts and soil niches from Victoria Valley, Antarctica. FEMS Microbiology Ecology, 92(4), fiw051.

    Article  Google Scholar 

  • Villar, S. E., Edwards, H. G., & Seaward, M. R. (2005). Raman spectroscopy of hot desert, high altitude epilithic lichens. Analyst, 130(5), 730–737.

    Article  CAS  Google Scholar 

  • Vishniac, W. V., & Mainzer, S. E. (1973). Antarctica as a Martian model. Life Sciences in Space Research, 11, 25–31.

    CAS  Google Scholar 

  • Warscheid, T., & Braams, J. (2000). Biodeterioration of stone: A review. International Biodeterioration & Biodegradation, 46(4), 343–368.

    Article  CAS  Google Scholar 

  • Wei, S. T., et al. (2016). Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo Dry Valleys, Antarctica. Frontiers in Microbiology, 7, 1642.

    PubMed  PubMed Central  Google Scholar 

  • Wierzchos, J., de los Rios, A., & Ascaso, C. (2012). Microorganisms in desert rocks: The edge of life on earth. International Microbiology, 15(4), 173–183.

    Google Scholar 

  • Wierzchos, J., et al. (2018). Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert. Current Opinion in Microbiology, 43, 124–131.

    Article  Google Scholar 

  • Zucconi, L., et al. (2014). Mapping the lithic colonization at the boundaries of life in Northern Victoria Land, Antarctica. Polar Biology, 39, 91–102.

    Article  Google Scholar 

Download references

Acknowledgment

Programa de Desarrollo de las Ciencias Básicas (PEDECIBA) and Agencia Nacional de Investigación e Innovación (POS_NAC_2016_1_ 129907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Fabiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amarelle, V., Carrasco, V., Fabiano, E. (2019). The Hidden Life of Antarctic Rocks. In: Castro-Sowinski, S. (eds) The Ecological Role of Micro-organisms in the Antarctic Environment. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02786-5_10

Download citation

Publish with us

Policies and ethics