Skip to main content

Role of Cyanobacteria in the Ecology of Polar Environments

  • Chapter
  • First Online:
The Ecological Role of Micro-organisms in the Antarctic Environment

Part of the book series: Springer Polar Sciences ((SPPS))

Abstract

Cyanobacteria are the dominant living features of Antarctic terrestrial environments. They have the capacity to directly influence components of the cryosphere including nutrient acquisition, soil stabilisation and driving soil community structure. This book chapter incorporates recent literature to discuss how gradients of cyanobacterial abundance and diversity across Antarctic soil and lithic biotopes influence local biogeochemical cycling regimes, drive community structure and enhance primary productivity. Most recent studies have gleaned novel insights into the ecological importance of Antarctic cyanobacteria by applying so-called multi-‘omics’ technologies. While these breakthroughs have undoubtedly improved our understanding of metabolic potential in polar niches; cultivation-based analyses of cyanobacteria should be leveraged to gain perspectives into actual physiological attributes and morphological variation within Antarctica. Combined, these studies show that members of the cyanobacteria are critical carbon and nitrogen regulators and are essential for making nutrients available to associated community members.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, B. J., et al. (2006). Diversity and distribution of Victoria Land biota. Soil Biology and Biochemistry, 38, 3003–3018. https://doi.org/10.1016/j.soilbio.2006.04.030.

    Article  CAS  Google Scholar 

  • Anesio, A. M., Hodson, A. J., Fritz, A., Psenner, R., & Sattler, B. (2009). High microbial activity on glaciers: Importance to the global carbon cycle. Global Change Biology, 15, 955–960.

    Article  Google Scholar 

  • Bahl, J., et al. (2011). Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nature Communications, 2, 163. https://doi.org/10.1038/ncomms1167.

    Article  CAS  PubMed  Google Scholar 

  • Banerjee, M., & Verma, V. (2009). Nitrogen fixation in endolithic cyanobacterial communities of the McMurdo Dry Valley, Antarctica. Science Asia, 35, 215–219.

    Article  CAS  Google Scholar 

  • Baqué, M., Viaggiu, E., Scalzi, G., & Billi, D. (2013). Endurance of the endolithic desert cyanobacterium Chroococcidiopsis under UVC radiation. Extremophiles: Life Under Extreme Conditions, 17, 161–169.

    Article  CAS  Google Scholar 

  • Barrow, C. (1992). World atlas of desertification (United Nations Environment Program). London: Edward Arnold.

    Google Scholar 

  • Belnap, J., & Gardner, J. S. (1993). Soil microstructure in soils of the Colorado plateau: The role of the cyanobacterium Microcoleus vaginatus. The Great Basin Naturalist, 53, 40–47.

    Google Scholar 

  • Benhua, S., et al. (2014). Biogeochemical responses to nutrient, moisture and temperature manipulations of soil from Signy Island, South Orkney Islands in the Maritime Antarctic. Antarctic Science, 26, 513–520.

    Article  Google Scholar 

  • Bergman, B., Gallon, J., Rai, A., & Stal, L. (1997). N2 fixation by non-heterocystous cyanobacteria1. FEMS Microbiology Reviews, 19, 139–185.

    Article  CAS  Google Scholar 

  • Bintanja, R., van Oldenborgh, G., Drijfhout, S., Wouters, B., & Katsman, C. (2013). Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nature Geoscience, 6, 376.

    Article  CAS  Google Scholar 

  • Blank, C., & Sanchez-Baracaldo, P. (2010). Timing of morphological and ecological innovations in the cyanobacteria–a key to understanding the rise in atmospheric oxygen. Geobiology, 8, 1–23.

    Article  CAS  PubMed  Google Scholar 

  • Boison, G., Mergel, A., Jolkver, H., & Bothe, H. (2004). Bacterial life and dinitrogen fixation at a gypsum rock. Applied and Environmental Microbiology, 70, 7070–7077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottos, E. M., Woo, A. C., Zawar-Reza, P., Pointing, S. B., & Cary, S. C. (2014). Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microbial Ecology, 67, 120–128. https://doi.org/10.1007/s00248-013-0296-y.

    Article  PubMed  Google Scholar 

  • Bromwich, D. H., et al. (2013). Central West Antarctica among the most rapidly warming regions on earth. Nature Geoscience, 6, 139.

    Article  CAS  Google Scholar 

  • Büdel, B., Bendix, J., Bicker, F. R., & Allan Green, T. (2008). Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor Valley, Antarctica. Journal of Phycology, 44, 1415–1424.

    Article  PubMed  Google Scholar 

  • Büdel, B., Schulz, B., Reichenberger, H., Bicker, F., & Green, T. (2009). Cryptoendolithic cyanobacteria from calcite marble rock ridges, Taylor Valley, Antarctica. Algological Studies, 129, 61–69.

    Article  Google Scholar 

  • Burgess, B. K., & Lowe, D. J. (1996). Mechanism of molybdenum nitrogenase. Chemical Reviews, 96, 2983–3012.

    Article  CAS  PubMed  Google Scholar 

  • Büsch, A., Friedrich, B., & Cramm, R. (2002). Characterization of the norB gene, encoding nitric oxide reductase, in the nondenitrifying cyanobacterium Synechocystis sp. strain PCC6803. Applied and Environmental Microbiology, 68, 668–672.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cameron, R. E., King, J., & David, C. N. (1970). Microbiology, ecology and microclimatology of soil sites in Dry Valleys of Southern Victoria Land, Antarctica.

    Google Scholar 

  • Cary, S. C., McDonald, I. R., Barrett, J. E., & Cowan, D. A. (2010). On the rocks: The microbiology of Antarctic Dry Valley soils. Nature Reviews Microbiology, 8, 129–138. https://doi.org/10.1038/nrmicro2281.

    Article  CAS  PubMed  Google Scholar 

  • Chan, Y., et al. (2012). Hypolithic microbial communities: Between a rock and a hard place. Environmental Microbiology, 14, 2272–2282. https://doi.org/10.1111/j.1462-2920.2012.02821.x.

    Article  PubMed  Google Scholar 

  • Chan, Y., van Nostrand, J. D., Zhou, J., Pointing, S. B., & Farrell, R. L. (2013). Functional ecology of an Antarctic dry valley. Proceedings of the National Academy of Sciences, 110, 8990–8995.

    Article  CAS  Google Scholar 

  • Chen, J., et al. (2015). Stronger warming effects on microbial abundances in colder regions. Scientific Reports, 5, 18032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chrismas, N. A., Anesio, A. M., & Sánchez-Baracaldo, P. (2018). The future of genomics in polar and alpine cyanobacteria. FEMS Microbiology Ecology, 94, fiy032.

    Article  PubMed Central  CAS  Google Scholar 

  • Cockell, C. S., & Stokes, M. D. (2004). Ecology: Widespread colonization by polar hypoliths. Nature, 431, 414–414.

    Article  CAS  PubMed  Google Scholar 

  • Cook, A., Fox, A., Vaughan, D., & Ferrigno, J. (2005). Retreating glacier fronts on the Antarctic peninsula over the past half-century. Science, 308, 541–544.

    Article  CAS  PubMed  Google Scholar 

  • Cowan, D. A., & Ah Tow, L. (2004). Endangered antarctic environments. Annual Review of Microbiology, 58, 649–690. https://doi.org/10.1146/annurev.micro.57.030502.090811.

    Article  CAS  PubMed  Google Scholar 

  • Cowan, D. A., & Makhalanyane, T. P. (2017). Energy from thin air. Nature, 552, 336.

    Article  CAS  PubMed  Google Scholar 

  • Cowan, D. A., Khan, N., Pointing, S. B., & Cary, S. C. (2010). Diverse hypolithic refuge communities in the McMurdo Dry Valleys. Antarctic Science, 22, 714–720.

    Article  Google Scholar 

  • Cowan, D. A., et al. (2011a). Hypolithic communities: Important nitrogen sources in Antarctic desert soils. Environmental Microbiology Reports, 3, 581–586.

    Article  CAS  PubMed  Google Scholar 

  • Cowan, D. A., et al. (2011b). Distribution and abiotic influences on hypolithic microbial communities in an Antarctic Dry Valley. Polar Biology, 34, 307–311.

    Article  Google Scholar 

  • Cowan, D. A., Makhalanyane, T. P., Dennis, P. G., & Hopkins, D. W. (2014). Microbial ecology and biogeochemistry of continental Antarctic soils. Frontiers in Microbiology, 5, 154. https://doi.org/10.3389/fmicb.2014.00154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowan, D., Ramond, J., Makhalanyane, T., & De Maayer, P. (2015). Metagenomics of extreme environments. Current Opinion in Microbiology, 25, 97–102.

    Article  CAS  PubMed  Google Scholar 

  • De la Torre, J. R., Goebel, B. M., Friedmann, E. I., & Pace, N. R. (2003). Microbial diversity of Cryptoendolithic communities from the McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 69, 3858–3867. https://doi.org/10.1128/aem.69.7.3858-3867.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de los Ríos, A., Wierzchos, J., Sancho, L. G., & Ascaso, C. (2004). Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy. FEMS Microbiology Ecology, 50, 143–152.

    Article  CAS  Google Scholar 

  • De Los Ríos, A., Grube, M., Sancho, L. G., & Ascaso, C. (2007). Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiology Ecology, 59, 386–395.

    Article  CAS  Google Scholar 

  • De los Ríos, A., Cary, C., & Cowan, D. (2014a). The spatial structures of hypolithic communities in the Dry Valleys of East Antarctica. Polar Biology. https://doi.org/10.1007/s00300-014-1564-0.

    Article  Google Scholar 

  • De Los Ríos, A., Wierzchos, J., & Ascaso, C. (2014b). The lithic microbial ecosystems of Antarctica’s McMurdo Dry Valleys. Antarctic Science, 26, 459–477.

    Article  Google Scholar 

  • de Scally, S., Makhalanyane, T., Frossard, A., Hogg, I., & Cowan, D. (2016). Antarctic microbial communities are functionally redundant, adapted and resistant to short term temperature perturbations. Soil Biology and Biochemistry, 103, 160–170.

    Article  CAS  Google Scholar 

  • Delgado-Baquerizo, M., et al. (2018). A global atlas of the dominant bacteria found in soil. Science, 359, 320–325.

    Article  CAS  PubMed  Google Scholar 

  • Fierer, N., et al. (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, 109, 21390–21395.

    Article  CAS  Google Scholar 

  • Fortner, S. K., Tranter, M., Fountain, A., Lyons, W. B., & Welch, K. A. (2005). The geochemistry of supraglacial streams of Canada Glacier, Taylor Valley (Antarctica), and their evolution into proglacial waters. Aquatic Geochemistry, 11, 391–412.

    Article  CAS  Google Scholar 

  • Freckman, D. W., & Virginia, R. A. (1997). Low-diversity antarctic soil nematode communities: Distribution and responce to disturbance. Ecology, 78, 363–369.

    Article  Google Scholar 

  • Friedmann, E. I. (1982). Endolithic microorganisms in the Antarctic cold desert. Science, 215, 1045–1053.

    Article  CAS  PubMed  Google Scholar 

  • Friedmann, E. I., & Ocampo, R. (1976). Endolithic blue-green algae in the dry valleys: Primary producers in the Antarctic desert ecosystem. Science, 193, 1247–1249.

    Article  CAS  PubMed  Google Scholar 

  • Friedmann, E. I., Hua, M., & Ocampo-Friedmann, R. (1988). 3.6 Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung, 58, 251–259.

    CAS  PubMed  Google Scholar 

  • Fyfe, J. C., & Saenko, O. A. (2006). Simulated changes in the extratropical Southern Hemisphere winds and currents. Geophysical Research Letters, 33, L06701.

    Google Scholar 

  • Geyer, K. M., Takacs-Vesbach, C. D., Gooseff, M. N., & Barrett, J. E. (2017). Primary productivity as a control over soil microbial diversity along environmental gradients in a polar desert ecosystem. PeerJ, 5, e3377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Golden, S. S., Johnson, C. H., & Kondo, T. (1998). The cyanobacterial circadian system: A clock apart. Current Opinion in Microbiology, 1, 669–673.

    Article  CAS  PubMed  Google Scholar 

  • Golubic, S., Friedmann, I., & Schneider, J. (1981). The lithobiontic ecological niche, with special reference to microorganisms. Journal of Sedimentary Research, 51.

    Google Scholar 

  • Hopkins, D., et al. (2006). Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biology and Biochemistry, 38, 3130–3140.

    Article  CAS  Google Scholar 

  • Hopkins, D. W., et al. (2009). Isotopic evidence for the provenance and turnover of organic carbon by soil microorganisms in the Antarctic dry valleys. Environmental Microbiology, 11, 597–608. https://doi.org/10.1111/j.1462-2920.2008.01830.x.

    Article  CAS  PubMed  Google Scholar 

  • Howard, J. B., & Rees, D. C. (1996). Structural basis of biological nitrogen fixation. Chemical Reviews, 96, 2965–2982.

    Article  CAS  PubMed  Google Scholar 

  • Huang, L., McCluskey, M. P., Ni, H., & Larossa, R. A. (2002). Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. Journal of Bacteriology, 184, 6845–6858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, K. A., & Lawley, B. (2003). A novel Antarctic microbial endolithic community within gypsum crusts. Environmental Microbiology, 5, 555–565.

    Article  PubMed  Google Scholar 

  • Hultman, J., et al. (2015). Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature, 521, 208–212.

    Article  CAS  PubMed  Google Scholar 

  • Hutchins, P. R., & Miller, S. R. (2017). Genomics of variation in nitrogen fixation activity in a population of the thermophilic cyanobacterium Mastigocladus laminosus. The ISME Journal, 11, 78–86.

    Article  CAS  PubMed  Google Scholar 

  • Ji, M., et al. (2017). Atmospheric trace gases support primary production in Antarctic desert surface soil. Nature, 552, 400.

    Article  CAS  PubMed  Google Scholar 

  • Khan, N., et al. (2011). Hypolithic microbial communities of quartz rocks from Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biology, 34, 1657–1668. https://doi.org/10.1007/s00300-011-1061-7.

    Article  Google Scholar 

  • Kirtman, B., et al. (2013). Near-term climate change: Projections and predictability.

    Google Scholar 

  • Kobayashi, D., Tamoi, M., Iwaki, T., Shigeoka, S., & Wadano, A. (2003). Molecular characterization and redox regulation of phosphoribulokinase from the cyanobacterium Synechococcus sp. PCC 7942. Plant and Cell Physiology, 44, 269–276.

    Article  CAS  PubMed  Google Scholar 

  • Komárek, J., Genuário, D. B., Fiore, M. F., & Elster, J. (2015). Heterocytous cyanobacteria of the Ulu Peninsula, James Ross Island, Antarctica. Polar Biology, 38, 475–492.

    Article  Google Scholar 

  • Latysheva, N., Junker, V. L., Palmer, W. J., Codd, G. A., & Barker, D. (2012). The evolution of nitrogen fixation in cyanobacteria. Bioinformatics, 28, 603–606.

    Article  CAS  PubMed  Google Scholar 

  • Laybourn-Parry, J., Tranter, M., & Hodson, A. J. (2012). The ecology of snow and ice environments. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Ligtenberg, S., van de Berg, W., van den Broeke, M., Rae, J., & van Meijgaard, E. (2013). Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Climate Dynamics, 41, 867–884.

    Article  Google Scholar 

  • Magalhães, C. M., Machado, A., Frank-Fahle, B., Lee, C. K., & Cary, S. C. (2014). The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys. Frontiers in Microbiology, 5, 515.

    Article  PubMed  PubMed Central  Google Scholar 

  • Makhalanyane, T. P., et al. (2013a). Evidence for successional development in Antarctic hypolithic bacterial communities. The ISME Journal, 7, 2080–2090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makhalanyane, T. P., et al. (2013b). Evidence of species recruitment and development of hot desert hypolithic communities. Environmental Microbiology Reports, 5, 219–224. https://doi.org/10.1111/1758-2229.12003.

    Article  PubMed  Google Scholar 

  • Makhalanyane, T. P., Pointing, S. B., & Cowan, D. A. (2014). Antarctic terrestrial microbiology (pp. 163–179). Berlin: Springer.

    Book  Google Scholar 

  • Makhalanyane, T. P., et al. (2015). Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodiversity and Conservation, 24, 819–840. https://doi.org/10.1007/s10531-015-0902-z.

    Article  Google Scholar 

  • Makhalanyane, T. P., van Goethem, M. W., & Cowan, D. A. (2016). Microbial diversity and functional capacity in polar soils. Current Opinion in Biotechnology, 38, 159–166. https://doi.org/10.1016/j.copbio.2016.01.011.

    Article  CAS  PubMed  Google Scholar 

  • Marsden, W., & Codd, G. (1984). Purification and molecular and catalytic properties of phosphoribulokinase from the cyanobacterium Chlorogloeopsis fritschii. Microbiology, 130, 999–1006.

    Article  CAS  Google Scholar 

  • Marsden, W., Lanaras, T., & Codd, G. (1984). Subcellular segregation of phosphoribulokinase and ribulose-1, 5-bisphosphate carboxylase/oxygenase in the cyanobacterium Chlorogloeopsis fritschii. Microbiology, 130, 2089–2093.

    Article  CAS  Google Scholar 

  • Matsumoto, G. I., Hirai, A., Hirota, K., & Watanuki, K. (1990). Organic geochemistry of the McMurdo dry valleys soil, Antarctica. Organic Geochemistry, 16, 781–791.

    Article  CAS  Google Scholar 

  • Meeks, J. C., et al. (2001). An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynthesis Research, 70, 85–106.

    Article  CAS  PubMed  Google Scholar 

  • Mergelov, N., Goryachkin, S., Shorkunov, I., Zazovskaya, E., & Cherkinsky, A. (2012). Endolithic pedogenesis and rock varnish on massive crystalline rocks in East Antarctica. Eurasian Soil Science, 45, 901–917.

    Article  CAS  Google Scholar 

  • Mills, L. S., Soulé, M. E., & Doak, D. F. (1993). The keystone-species concept in ecology and conservation. Bioscience, 43, 219–224.

    Article  Google Scholar 

  • Moorhead, D. L., Barrett, J. E., Virginia, R. A., Wall, D. H., & Porazinska, D. (2003). Organic matter and soil biota of upland wetlands in Taylor Valley, Antarctica. Polar Biology, 26, 567–576.

    Article  Google Scholar 

  • Niederberger, T. D., et al. (2012). Diverse and highly active diazotrophic assemblages inhabit ephemerally wetted soils of the Antarctic Dry Valleys. FEMS Microbiology Ecology, 82, 376–390.

    Article  CAS  PubMed  Google Scholar 

  • Niederberger, T. D., et al. (2015a). Carbon-fixation rates and associated microbial communities residing in arid and ephemerally wet Antarctic Dry Valley soils. Frontiers in Microbiology, 6, 9.

    PubMed  PubMed Central  Google Scholar 

  • Niederberger, T. D., et al. (2015b). Microbial community composition of transiently wetted Antarctic Dry Valley soils. Frontiers in Microbiology, 6, 9.

    PubMed  PubMed Central  Google Scholar 

  • Novis, P. M., et al. (2007). Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Global Change Biology, 13, 1224–1237.

    Article  Google Scholar 

  • Paerl, H. W., Pinckney, J. L., & Steppe, T. F. (2000). Cyanobacterial–bacterial mat consortia: Examining the functional unit of microbial survival and growth in extreme environments. Environmental Microbiology, 2, 11–26.

    Article  CAS  PubMed  Google Scholar 

  • Palmer, R. J., & Friedmann, E. I. (1990). Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microbial Ecology, 19, 111–118.

    Article  PubMed  Google Scholar 

  • Parks, D. H., et al. (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nature Microbiology, 2, 1533.

    Article  CAS  PubMed  Google Scholar 

  • Philippot, L., et al. (2013). Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal, 7, 1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pointing, S. B. (2016). Biological soil crusts: An organizing principle in drylands (pp. 199–213). Cham: Springer.

    Book  Google Scholar 

  • Pointing, S. B., et al. (2009). Highly specialized microbial diversity in hyper-arid polar desert. Proceedings of the National Academy of Sciences of the United States of America, 106, 19964–19969. https://doi.org/10.1073/pnas.0908274106.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pointing, S. B., Bollard-Breen, B., & Gillman, L. N. (2014). Diverse cryptic refuges for life during glaciation. Proceedings of the National Academy of Sciences, 111, 5452–5453.

    Article  CAS  Google Scholar 

  • Poly, F., Monrozier, L. J., & Bally, R. (2001). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, 152, 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Pringault, O., & Garcia-Pichel, F. (2004). Hydrotaxis of cyanobacteria in desert crusts. Microbial Ecology, 47, 366–373.

    Article  CAS  PubMed  Google Scholar 

  • Rhodes, M., et al. (2013). The prokaryotes (pp. 43–55). Berlin: Springer.

    Book  Google Scholar 

  • Romanovsky, V. E., Smith, S. L., & Christiansen, H. H. (2010). Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: A synthesis. Permafrost and Periglacial Processes, 21, 106–116.

    Article  Google Scholar 

  • Russell, N., Edwards, H., & Wynn-Williams, D. (1998). FT-Raman spectroscopic analysis of endolithic microbial communities from Beacon sandstone in Victoria Land, Antarctica. Antarctic Science, 10, 63–74.

    Article  Google Scholar 

  • Scherer, S., Almon, H., & Böger, P. (1988). Interaction of photosynthesis, respiration and nitrogen fixation in cyanobacteria. Photosynthesis Research, 15, 95–114.

    Article  CAS  PubMed  Google Scholar 

  • Schirrmeister, B. E., Sanchez-Baracaldo, P., & Wacey, D. (2016). Cyanobacterial evolution during the Precambrian. International Journal of Astrobiology, 15, 187–204.

    Article  Google Scholar 

  • Schlesinger, W. H., et al. (2003). Community composition and photosynthesis by photoautotrophs under quartz pebbles, southern Mojave Desert. Ecology, 84, 3222–3231.

    Article  Google Scholar 

  • Serra, J. L., Llama, M. J., Rowell, P., & Stewart, W. D. (1989). Purification and characterization of phosphoribulokinase from the N2-fixing cyanobacterium Anabaena cylindrica. Plant Science, 59, 1–9.

    Article  CAS  Google Scholar 

  • Siebert, J., et al. (1996). Cryptoendolithic microorganisms from Antarctic sandstone of Linnaeus Terrace (Asgard Range): Diversity, properties and interactions. Biodiversity and Conservation, 5, 1337–1363.

    Article  Google Scholar 

  • Stal, L. J. (1995). Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist, 131, 1–32.

    Article  CAS  PubMed  Google Scholar 

  • Stibal, M., Šabacká, M., & Žárský, J. (2012). Biological processes on glacier and ice sheet surfaces. Nature Geoscience, 5, 771.

    Article  CAS  Google Scholar 

  • Tahon, G., Tytgat, B., Stragier, P., & Willems, A. (2016). Analysis of cbbL, nifH, and pufLM in soils from the Sør Rondane Mountains, Antarctica, reveals a large diversity of autotrophic and phototrophic bacteria. Microbial Ecology, 71, 131–149.

    Article  PubMed  Google Scholar 

  • Thomas, C. M., & Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews Microbiology, 3, 711–721.

    Article  CAS  PubMed  Google Scholar 

  • Turner, J., et al. (2005). Antarctic climate change during the last 50 years. International Journal of Climatology, 25, 279–294.

    Article  Google Scholar 

  • Turner, J., et al. (2016). Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 535, 411.

    Article  CAS  PubMed  Google Scholar 

  • Valverde, A., Makhalanyane, T. P., Seely, M., & Cowan, D. A. (2015). Cyanobacteria drive community composition and functionality in rock–soil interface communities. Molecular Ecology, 24, 812–821.

    Article  CAS  PubMed  Google Scholar 

  • Van Goethem, M. W., Makhalanyane, T. P., Valverde, A., Cary, S. C., & Cowan, D. A. (2016). Characterization of bacterial communities in lithobionts and soil niches from Victoria Valley, Antarctica. FEMS Microbiology Ecology, 92, fiw051.

    Article  PubMed  CAS  Google Scholar 

  • Van Goethem, M. W., Makhalanyane, T. P., Cowan, D. A., & Valverde, A. (2017). Cyanobacteria and Alphaproteobacteria May Facilitate Cooperative Interactions in Niche Communities. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2017.02099.

  • van Horn, D. J., et al. (2013). Factors controlling soil microbial biomass and bacterial diversity and community composition in a Cold Desert ecosystem: Role of geographic scale. PLoS One, 8, e66103. https://doi.org/10.1371/journal.pone.0066103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F., & Corbeil, J. (2012). Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Applied and Environmental Microbiology, 78, 549–559.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vishniac, H. (1993). The microbiology of Antarctic soils. Antarctic Microbiology, 297–341.

    Google Scholar 

  • Wada, E., Shibata, R., & Torii, T. (1981). 15N abundance in Antarctica: Origin of soil nitrogen and ecological implications. Nature, 292, 327.

    Article  CAS  Google Scholar 

  • Walvoord, M. A., et al. (2003). A reservoir of nitrate beneath desert soils. Science, 302, 1021–1024.

    Article  CAS  PubMed  Google Scholar 

  • Wei, S. T., et al. (2015a). Diverse metabolic and stress-tolerance pathways in chasmoendolithic and soil communities of Miers Valley, McMurdo Dry Valleys, Antarctica. Polar Biology, 38, 433–443.

    Article  Google Scholar 

  • Wei, S. T., Higgins, C. M., Adriaenssens, E. M., Cowan, D. A., & Pointing, S. B. (2015b). Genetic signatures indicate widespread antibiotic resistance and phage infection in microbial communities of the McMurdo Dry Valleys, East Antarctica. Polar Biology, 38, 919–925.

    Article  Google Scholar 

  • Wierzchos, J., de los Ríos, A., & Ascaso, C. (2013). Microorganisms in desert rocks: The edge of life on earth. International Microbiology, 15, 172–182.

    Google Scholar 

  • Williams, T. J., et al. (2013). The role of planktonic Flavobacteria in processing algal organic matter in coastal East Antarctica revealed using metagenomics and metaproteomics. Environmental Microbiology, 15, 1302–1317.

    Article  CAS  PubMed  Google Scholar 

  • Wong, F. K., et al. (2010). Hypolithic microbial community of quartz pavement in the high-altitude tundra of central Tibet. Microbial Ecology, 60, 730–739. https://doi.org/10.1007/s00248-010-9653-2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wood, S. A., Rueckert, A., Cowan, D. A., & Cary, S. C. (2008). Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica. The ISME Journal, 2, 308–320. https://doi.org/10.1038/ismej.2007.104.

    Article  CAS  PubMed  Google Scholar 

  • Wynn-Williams, D. D. (1991). Aerobiology and colonization in Antarctica—the BIOTAS Programme. Grana, 30, 380–393.

    Article  Google Scholar 

  • Wynn-Williams, D. (1996). Antarctic microbial diversity: The basis of polar ecosystem processes. Biodiversity and Conservation, 5, 1271–1293.

    Article  Google Scholar 

  • Xie, M., et al. (2016). Metagenomic analysis reveals symbiotic relationship among bacteria in microcystis-dominated community. Frontiers in Microbiology, 7, 56.

    PubMed  PubMed Central  Google Scholar 

  • Yergeau, E., et al. (2009). Environmental microarray analyses of Antarctic soil microbial communities. The ISME Journal, 3, 340.

    Article  CAS  PubMed  Google Scholar 

  • Yung, C. C., et al. (2014). Characterization of Chasmoendolithic Community in Miers Valley, McMurdo Dry Valleys, Antarctica. Microbial Ecology, 68, 351–359. https://doi.org/10.1007/s00248-014-0412-7.

    Article  PubMed  Google Scholar 

  • Zhang, L., et al. (2015). Cyanobacterial diversity in benthic mats of the McMurdo Dry Valley lakes, Antarctica. Polar Biology, 38, 1097–1110.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the University of Pretoria and the South African National Research Foundation (NRF) for continued financial support of our research programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don A. Cowan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Goethem, M.W., Cowan, D.A. (2019). Role of Cyanobacteria in the Ecology of Polar Environments. In: Castro-Sowinski, S. (eds) The Ecological Role of Micro-organisms in the Antarctic Environment. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-02786-5_1

Download citation

Publish with us

Policies and ethics