Skip to main content

On the Complexity of Pointer Arithmetic in Separation Logic

  • Conference paper
  • First Online:
Programming Languages and Systems (APLAS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11275))

Included in the following conference series:

Abstract

We investigate the complexity consequences of adding pointer arithmetic to separation logic. Specifically, we study an extension of the points-to fragment of symbolic-heap separation logic with sets of simple “difference constraints” of the form \(x \le y + k\), where x and y are pointer variables and k is an integer offset. This extension can be considered a practically minimal language for separation logic with pointer arithmetic.

Most significantly, we find that, even for this minimal language, polynomial-time decidability is already impossible: satisfiability becomes \(\mathsf {NP}\)-complete, while quantifier-free entailment becomes \(\mathsf {coNP}\)-complete and quantified entailment becomes \(\varPi ^P_2\)-complete (where \(\varPi ^P_2\) is the second class in the polynomial-time hierarchy).

However, the language does satisfy the small model property, meaning that any satisfiable formula has a model, and any invalid entailment has a countermodel, of polynomial size, whereas this property fails when richer forms of arithmetical constraints are permitted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we view the complexity of \(A\,\models \,\exists \mathbf {z}.B\) as \(\varPi ^0_2\), noting that the entailment is, implicitly, universally quantified at the outermost level.

References

  1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foundations for decision problems in separation logic with general inductive predicates. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 411–425. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54830-7_27

    Chapter  MATH  Google Scholar 

  2. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30538-5_9

    Chapter  MATH  Google Scholar 

  3. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: memory safety for systems-level code. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_15

    Chapter  Google Scholar 

  4. Brochenin, R., Demri, S., Lozes, E.: On the almighty wand. Inf. Comput. 211, 106–137 (2012)

    Article  MathSciNet  Google Scholar 

  5. Brotherston, J., Fuhs, C., Gorogiannis, N., Navarro Pérez, J.: A decision procedure for satisfiability in separation logic with inductive predicates. In: Proceedings of the CSL-LICS, pp. 25:1–25:10. ACM (2014)

    Google Scholar 

  6. Brotherston, J., Gorogiannis, N., Kanovich, M.: Biabduction (and related problems) in array separation logic. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 472–490. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_29

    Chapter  Google Scholar 

  7. Brotherston, J., Gorogiannis, N., Kanovich, M., Rowe, R.: Model checking for symbolic-heap separation logic with inductive predicates. In: Proceedings of the POPL-43, pp. 84–96. ACM (2016)

    Google Scholar 

  8. Calcagno, C., et al.: Moving fast with software verification. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 3–11. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_1

    Chapter  Google Scholar 

  9. Calcagno, C., Yang, H., O’Hearn, P.W.: Computability and complexity results for a spatial assertion language for data structures. In: Hariharan, R., Vinay, V., Mukund, M. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 108–119. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45294-X_10

    Chapter  Google Scholar 

  10. Chen, T., Song, F., Wu, Z.: Tractability of separation logic with inductive definitions: beyond lists. In: Proceedings of the CONCUR-28, pp. 33:1–33:16. Dagstuhl (2017)

    Google Scholar 

  11. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning in a fragment of separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 235–249. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23217-6_16

    Chapter  Google Scholar 

  12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  13. Demri, S., Lozes, E., Lugiez, D.: On symbolic heaps modulo permission theories. In: Proceedings of the FSTTCS-37, pp. 25:1–25:13. Dagstuhl (2017)

    Google Scholar 

  14. Demri, S., Lozes, É., Mansutti, A.: The effects of adding reachability predicates in propositional separation logic. In: Baier, C., Dal Lago, U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 476–493. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89366-2_26

    Chapter  MATH  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  16. Gu, X., Chen, T., Wu, Z.: A complete decision procedure for linearly compositional separation logic with data constraints. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 532–549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1_36

    Chapter  Google Scholar 

  17. Haase, C.: Subclasses of Presburger arithmetic and the weak EXP hierarchy. In: Proceedings of CSL-LICS, pp. 47:1–47:10. ACM (2014)

    Google Scholar 

  18. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 21–38. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_2

    Chapter  Google Scholar 

  19. Kimura, D., Tatsuta, M.: Decision procedure for entailment of symbolic heaps with arrays. In: Chang, B.-Y.E. (ed.) APLAS 2017. LNCS, vol. 10695, pp. 169–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71237-6_9

    Chapter  Google Scholar 

  20. Le, Q.L., Sun, J., Chin, W.-N.: Satisfiability modulo heap-based programs. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 382–404. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_21

    Chapter  Google Scholar 

  21. Le, Q.L., Tatsuta, M., Sun, J., Chin, W.-N.: A decidable fragment in separation logic with inductive predicates and arithmetic. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 495–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_26

    Chapter  Google Scholar 

  22. Le, X.B., Gherghina, C., Hobor, A.: Decision procedures over sophisticated fractional permissions. In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 368–385. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35182-2_26

    Chapter  Google Scholar 

  23. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In: Proceedings of the LICS-17, pp. 55–74. IEEE (2002)

    Google Scholar 

  24. Scarpellini, B.: Complexity of subcases of Presburger arithmetic. Trans. Am. Math. Soc. 284(1), 203–218 (1984)

    Article  MathSciNet  Google Scholar 

  25. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3, 1–22 (1977)

    Article  MathSciNet  Google Scholar 

  26. Yang, H., et al.: Scalable shape analysis for systems code. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 385–398. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1_36

    Chapter  Google Scholar 

  27. Yang, H., O’Hearn, P.: A semantic basis for local reasoning. In: Nielsen, M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 402–416. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6_28

    Chapter  Google Scholar 

Download references

Acknowledgements

Many thanks to Josh Berdine and Nikos Gorogiannis for a number of illuminating discussions on pointer arithmetic, and to our anonymous reviewers for their comments, which have helped us to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Brotherston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brotherston, J., Kanovich, M. (2018). On the Complexity of Pointer Arithmetic in Separation Logic. In: Ryu, S. (eds) Programming Languages and Systems. APLAS 2018. Lecture Notes in Computer Science(), vol 11275. Springer, Cham. https://doi.org/10.1007/978-3-030-02768-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02768-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02767-4

  • Online ISBN: 978-3-030-02768-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics