Skip to main content

Exploiting Long Distance Connections to Strengthen Network Robustness

  • Conference paper
  • First Online:
Internet and Distributed Computing Systems (IDCS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11226))

Included in the following conference series:

Abstract

Network fault tolerance (also known as resilience or robustness) is becoming a highly relevant topic, expecially in real networks, where it is essential to know to what extent it is still working notwithstanding its failures. Different questions need attention to guarantee robustness, as how it can be effectively and efficiently (i.e. rapidly) assessed, and which factors it depends on, as network structure, network dynamics and failure mechanisms. All studies aim at finding a way to hold (or increase) resilience; in this work we propose a strategy to improve robustness for Scale-free networks by adding links between highly distant nodes in the network; results show that even adding few long-distance links leads to a significant improvement of resilience, therefore this can be assumed as an effective (and possibly with low cost) approach for increasing robustness in networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, R., Jeong, H., Barabasi, A.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Article  Google Scholar 

  2. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002). http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:cond-mat/0106096

    Article  MathSciNet  Google Scholar 

  3. Ash, J., Newth, D.: Optimizing complex networks for resilience against cascading failure. Phys. A: Stat. Mech. Appl. 380, 673–683 (2007). https://doi.org/10.1016/j.physa.2006.12.058. http://www.sciencedirect.com/science/article/pii/S0378437107002543

    Article  Google Scholar 

  4. Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proc. Natl. Acad. Sci. 101, 3747–3752 (2004)

    Article  Google Scholar 

  5. Baxter, G.J., Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Avalanche collapse of interdependent networks. Phys. Rev. Lett. 109, 248701 (2012). https://doi.org/10.1103/PhysRevLett.109.248701. https://link.aps.org/doi/10.1103/PhysRevLett.109.248701

  6. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464(7291), 1025–1028 (2010). https://doi.org/10.1038/nature08932

    Article  Google Scholar 

  7. Duan, Y., Fu, X., Li, W., Zhang, Y., Fortino, G.: Evolution of scale-freewireless sensor networks with feature of small-world networks. Complexity 2017. https://doi.org/10.1155/2017/2516742. https://www.hindawi.com/journals/complexity/2017/2516742/cta/

    MATH  Google Scholar 

  8. Fu, X., Li, W., Fortino, G.: Empowering the invulnerability of wireless sensor networks through super wires and super nodes. In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, pp. 561–568, May 2013. https://doi.org/10.1109/CCGrid.2013.95

  9. Gao, J., Buldyrev, S.V., Stanley, H.E., Havlin, S.: Networks formed from interdependent networks, vol. 8 (2011). http://dx.doi.org/10.1038/nphys2180

    Article  Google Scholar 

  10. Herrmann, H.J., Schneider, C.M., Moreira, A.A., Andrade Jr., J.S., Havlin, S.: Onion-like network topology enhances robustness against malicious attacks. J. Stat. Mech. Theor. Exp. 2011(01), P01027 (2011). http://stacks.iop.org/1742-5468/2011/i=01/a=P01027

    Article  Google Scholar 

  11. Jamakovic, A., Uhlig, S.: Influence of the network structure on robustness. In: 2007 15th IEEE International Conference on Networks, pp. 278–283, November 2007. https://doi.org/10.1109/ICON.2007.4444099

  12. Kim, Y., Chen, Y.S., Linderman, K.: Supply network disruption and resilience: a network structural perspective. J. Oper. Manag. 33–34, 43–59 (2015). https://doi.org/10.1016/j.jom.2014.10.006. http://www.sciencedirect.com/science/article/pii/S0272696314000746

    Article  Google Scholar 

  13. Li, D., et al.: Percolation transition in dynamical traffic network with evolving critical bottlenecks. Proc. Natl. Acad. Sci. 112(3), 669–672 (2015). https://doi.org/10.1073/pnas.1419185112. http://www.pnas.org/content/112/3/669

    Article  Google Scholar 

  14. Majdandzic, A., Podobnik, B., Buldyrev, S.V., Kenett, D.Y., Havlin, S., Eugene Stanley, H.: Spontaneous recovery in dynamical networks. Nat. Phys. 10, 34–38 (2014). https://doi.org/10.1038/nphys2819

    Article  Google Scholar 

  15. Newman, M.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003). http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:cond-mat/0303516

    Article  MathSciNet  Google Scholar 

  16. Peter, B.: Fear in a handful of dust: aviation and the icelandic volcano. Significance 7(3), 112–115. https://doi.org/10.1111/j.1740-9713.2010.00436.x. https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.1740-9713.2010.00436.x

    Article  MathSciNet  Google Scholar 

  17. Schneider, C.M., Moreira, A.A., Andrade Jr., J.S., Havlin, S., Herrmann, H.J.: Mitigation of malicious attacks on networks. Proc. Natl. Acad. Sci. 108, 3838–3841 (2011). https://doi.org/10.1073/pnas.1009440108

    Article  Google Scholar 

  18. Shao, J., Buldyrev, S.V., Havlin, S., Stanley, H.E.: Cascade of failures in coupled network systems with multiple support-dependence relations. Phys. Rev. E 83, 036116 (2011). https://doi.org/10.1103/PhysRevE.83.036116

  19. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001). https://doi.org/10.1038/35065725

    Article  Google Scholar 

  20. Sydney, A., Scoglio, C., Youssef, M., Schumm, P.: Characterizing the robustness of complex networks. ArXiv e-prints, November 2008

    Google Scholar 

  21. Zhou, A., Maleti, S., Zhao, Y.: Robustness and percolation of holes in complex networks. Phys. A: Stat. Mech. Appl. 502, 459–468 (2018). https://doi.org/10.1016/j.physa.2018.02.149. http://www.sciencedirect.com/science/article/pii/S0378437118302188

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Longheu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carchiolo, V., Grassia, M., Longheu, A., Malgeri, M., Mangioni, G. (2018). Exploiting Long Distance Connections to Strengthen Network Robustness. In: Xiang, Y., Sun, J., Fortino, G., Guerrieri, A., Jung, J. (eds) Internet and Distributed Computing Systems. IDCS 2018. Lecture Notes in Computer Science(), vol 11226. Springer, Cham. https://doi.org/10.1007/978-3-030-02738-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02738-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02737-7

  • Online ISBN: 978-3-030-02738-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics