Skip to main content

Graph Based RRT Optimization for Autonomous Mobile Robots

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering (IScIDE 2018)

Abstract

In this article, we present the application of Graph Theory in the development of an algorithm of path planning for mobile robots. The proposed system evaluates a RRT algorithm based on the individual cost of nodes and the optimized reconnection of the final path based on Dijkstra and Floyd criteria. Our proposal includes the comparisons between different RRT* algorithms and the simulation of the environments in different platforms. The results identify that these criteria must be considered in all the variations of RRT to achieve a definitive algorithm in mobile robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valle, S.M.L.: Rapidly exploring random trees: a new tool for path planning. Iowa State University, p. 4 (1998)

    Google Scholar 

  2. Islam, F.: RRT*-smart: rapid convergence implementation of RRT* towards optimal solution. In: Proceedings of IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1651–1656 (2012)

    Google Scholar 

  3. Alterovitz, R., Patil, S., Derbakova, A.: Rapidly-exploring roadmaps: weighing exploration vs. refinement in optimal motion planning. In: Robotics and Automation (ICRA), pp. 3706–3712 (2011)

    Google Scholar 

  4. Rios-Martinez, J., Spalanzani, A., Laugier, C.: Probabilistic autonomous navigation using Risk-RRT approach and models of human interaction. In: CONACYT (2012)

    Google Scholar 

  5. Salihoglu, S., Widom, J.: Optimizing graph algorithms on pregel-like systems. In: Proceedings of the VLDB Endowment, vol. 7 (2014)

    Article  Google Scholar 

  6. Bast, H., et al.: Route planning in transportation networks. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering. LNCS, vol. 9220, pp. 19–80. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49487-6_2

    Chapter  Google Scholar 

  7. Lopez, D., Lozano, A.: Transport network models for routing algorithms. In: Proceedings of 2016 IEEE 13th International Conference on Networking, Sensing, and Control (2016)

    Google Scholar 

  8. Pfetsch, M.E., Borndörfer, R.: Routing in line planning for public transport. Konrad-Zuse-Zentrum f¨ur Informationstechnik Berlin (2004)

    Google Scholar 

  9. Pareekutty, N., James, F., Ravindran, B.: RRT-HX: RRT with heuristic extend operations for motion planning in robotic systems. In: Proceedings of the ASME 2016 International Design Engineering Technical Conferences (2016)

    Google Scholar 

  10. Penev, I., Karova, M.: Path planning algorithm for mobile robot. In: Conference: 15th International Conference on Applied Computer Science (2015)

    Google Scholar 

  11. Ducho, F., Babinec, A., Kajan, M.: Path planning with modified a star algorithm for a mobile robot. In: Modelling of Mechanical and Mechatronic Systems, pp. 59–69 (2014)

    Google Scholar 

  12. Purcaru, C., Precup, R.E., Iercan, D., Fedorovici, L.O., David, R.C.: Hybrid PSO-GSA robot path planning algorithm in static environments with danger zones. In: System Theory, Control and Computing (ICSTCC) (2013)

    Google Scholar 

  13. Liu, H., Stoll, N., Junginger, S., Thurow, K.: A Floyd-Dijkstra hybrid application for mobile robot path planning in life science automation. In: 8th IEEE International Conference on Automation Science and Engineering (2012)

    Google Scholar 

  14. Weiren, S., Kai, W.: Floyd algorithm for the shortest path planning of mobile robot. Chin. J. Sci. Instrum. 10, 2088–2092 (2009)

    Google Scholar 

  15. Tomoiagă, T., Predoi, C., Coşereanu, L.: Indoor mapping using low cost LIDAR based systems. In: Applied Mechanics and Materials (2016)

    Google Scholar 

  16. Kim, J.: Motion planning of aerial robot using rapidly-exploring random trees with dynamic constraints. In: International Conference on Robotics & Automation (2003)

    Google Scholar 

  17. Yang, K., et al.: Spline-based RRT path planner for non-holonomic robots. J. Intell. Robot. Syst. 73, 763–782 (2013)

    Article  Google Scholar 

  18. Kuffner, J.J., LaValle, S.M.: RRT-connect: an efficient approach to single-query path planning. In: International Conference on Robotics & Automation (2000)

    Google Scholar 

  19. Naderi, K., Rajamaki, J., Hamalainen, P.: RT-RRT*: a real-time path planning algorithm based on RRT*. In: MIG (2015)

    Google Scholar 

  20. Ge, J., Sun, F., Liu, C.: RRT-GD: an efficient rapidly-exploring random tree approach with goal directionality for redundant manipulator path planning. In: International Conference on Robotics and Biomimetics (2016)

    Google Scholar 

  21. Kang, R., Liu, H., Wang, Z.: Fast convergence RRT for asymptotically-optimal motion planning. In: International Conference on Robotics and Biomimetics (2016)

    Google Scholar 

  22. Zhao, Y.J., et al.: 3D motion planning for robot-assisted active flexible needle based on rapidly-exploring random trees. J. Autom. Control Eng. 3(5) (2015)

    Google Scholar 

  23. Huh, J., Lee, D.D.: Learning high-dimensional mixture models for fast collision detection in rapidly-exploring random trees. In: IEEE International Conference on Robotics and Automation (ICRA) (2016)

    Google Scholar 

  24. Lite, D.: Learning high-dimensional mixture models for collision deteccion. In: International Conference on Robotics and Biometrics (2016)

    Google Scholar 

  25. Kim, H., Kim, D., Shin, J.U., Kim, H., Myung, H.: Angular rate-constrained path planning algorithm for unmanned surface vehicles. Ocean Eng. 84, 37–44 (2014)

    Article  Google Scholar 

  26. Gautam, S.A., Verma, N.: Path planning for unmanned aerial vehicle based on genetic algorithm & artificial neural network in 3D. In: Data Mining and Intelligent Computing (ICDMIC) (2014)

    Google Scholar 

  27. Bouraine, S., Fraichard, T., Azouaoui, O.: Real-time safe path planning for robot navigation in unknown dynamic environments. In: Computing Systems and Applications (2016)

    Google Scholar 

  28. Xu, J., Duindam, V., Alterovitz, R., Goldberg, K.: Motion planning for steerable needles in 3D environments with obstacles using rapidly-exploring random trees and backchaining. In: Conference on Automation Science and Engineering, vol. 4 (2008)

    Google Scholar 

  29. Nguyen, T.H., Kim, D.H., Lee, C.H., Kim, H.K., Kim, S.B.: Mobile robot localization and path planning in a picking robot system using kinect camera in partially known environment. In: International Conference on Advanced Engineering Theory and Applications (2016)

    Google Scholar 

  30. Hebecker, T., Buchholz, R., Ortmeier, F.: Model-based local path planning for UAVs. J. Intell. Robot. Syst. 78(1), 127–142 (2015)

    Article  Google Scholar 

  31. Paranjape, A.A., Meier, K.C., Shi, X., Chung, S.J., Hutchinson, S.: Motion primitives and 3D path planning for fast flight through a forest. Int. J. Robot. Res. 34(3), 357–377 (2015)

    Article  Google Scholar 

  32. Farinella, J., Lay, C., Bhandari, S.: UAV collision avoidance using a predictive rapidly-exploring random Tree (RRT). In: American Institute of Aeronautics and Astronautics (2016)

    Google Scholar 

  33. Duchoň, F., et al.: Path planning with modified a star algorithm for a mobile robot. Procedia Eng. 96, 59–69 (2014)

    Article  Google Scholar 

  34. Aguilar, W.G., Morales, S.G.: 3D environment mapping using the kinect V2 and path planning based on RRT algorithms. Electronics 5, 70 (2016)

    Article  Google Scholar 

  35. Karaman, S., Frazzoli, E.: Incremental sampling-based algorithms for optimal motion planning. Robot. Sci. Syst. 104, 2 (2010)

    Google Scholar 

  36. Wei, D.: An optimized Floyd algorithm for the shortest path problem. J. Netw. 5, 1496 (2010)

    Google Scholar 

  37. Djojo, M.A., Karyono, K.: Computational load analysis of Dijkstra, A*, and Floyd-Warshall algorithms in mesh network. In: ROBIONETICS (2013)

    Google Scholar 

  38. Adiyatov, O., Varol, H.A.: Rapidly-exploring random tree based memory efficient motion planning. In: Mechatronics and Automation (ICMA), pp. 354–359 (2013)

    Google Scholar 

Download references

Acknowledgement

This work is part of the project MultiNavCar, 2016-PIC-025, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aguilar, W.G. et al. (2018). Graph Based RRT Optimization for Autonomous Mobile Robots. In: Peng, Y., Yu, K., Lu, J., Jiang, X. (eds) Intelligence Science and Big Data Engineering. IScIDE 2018. Lecture Notes in Computer Science(), vol 11266. Springer, Cham. https://doi.org/10.1007/978-3-030-02698-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02698-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02697-4

  • Online ISBN: 978-3-030-02698-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics