Skip to main content

Wireless Power Transfer Solutions for ‘Things’ in the Internet of Things

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2018 (FTC 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 880))

Included in the following conference series:

Abstract

The Internet of Things (IoT) has several applications in various industries and contexts. During the last decade, IoT technologies were mainly dominated by the supply chains and warehouses of large manufacturers and retailers. Recently, IoT technologies have been adopted in virtually all other fields, including healthcare, smart cities, and self-driving cars. While the opportunities for IoT applications are endless, challenges do exist. These challenges can be broadly classified as social, political, organizational, privacy, security, environmental, and technological challenges. In this paper, we focus on one dimension of the technological challenges, specifically on how IoT products/devices can be powered and charged without interruption, while either in use or in motion, since they are known to be intensively power consuming objects. This literature review paper explores how the emerging technology of Wireless Power Transfer (WPT) could aid in solving power and charging problems for various IoT devices. Our findings suggest that in theory, WPT can indeed be used to solve IoT’s intelligent devices, or “things”, charging and power challenges. However, we found that human exposure and safety, industrial context, environmental issues, and cost of technology are important factors that could affect WPT adoption in organizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sajid, O., Haddara, M.: NFC mobile payments: are we ready for them? In: SAI Computing Conference (SAI), 2016, pp. 960–967 (2016)

    Google Scholar 

  2. Haddara, M., Elragal, A.: The readiness of ERP systems for the factory of the future. Procedia Comput. Sci. 64, 721–728 (2015)

    Article  Google Scholar 

  3. Misra, G., Kumar, V., Agarwal, A., Agarwal, K.: Internet of Things (IoT)—a technological analysis and survey on vision, concepts, challenges, innovation directions, technologies, and applications (an upcoming or future generation computer communication system technology). Am. J. Electr. Electron. Eng. 4, 23–32 (2016)

    Google Scholar 

  4. Vermesan, O., Friess, P., Guillemin, P., Gusmeroli, S., Sundmaeker, H., Bassi, A., et al.: Internet of Things strategic research roadmap. In: Internet of Things-Global Technological and Societal Trends, vol. 1, pp. 9–52 (2011)

    Google Scholar 

  5. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the Internet of Things: a survey. IEEE Commun. Surv. Tutor. 16, 414–454 (2014)

    Article  Google Scholar 

  6. Isenberg, M.-A., Werthmann, D., Morales-Kluge, E., Scholz-Reiter, B.: The role of the Internet of Things for increased autonomy and agility in collaborative production environments. In: Uckelmann, D., Harrison, M., Michahelles, F. (eds.) Architecting the Internet of Things, pp. 195–228. Springer, Berlin (2011)

    Chapter  Google Scholar 

  7. López, T.S., Brintrup, A., Isenberg, M.-A., Mansfeld, J.: Resource management in the Internet of Things: clustering, synchronisation and software agents. In: Uckelmann, D., Harrison, M., Michahelles, F. (eds.) Architecting the Internet of Things, pp. 159–193. Springer, Berlin (2011)

    Chapter  Google Scholar 

  8. Wong, Y., McFarlane, D., Zaharudin, A.A., Agarwal, V.: The intelligent product driven supply chain. In: 2002 IEEE International Conference on Systems, Man and Cybernetics, vol. 4, p. 6 (2002)

    Google Scholar 

  9. Mattern, F., Floerkemeier, C.: From the internet of computers to the Internet of Things. In: Sachs, K., Petrov, I., Guerrero, P. (eds.) From Active Data Management to Event-Based Systems and More, pp. 242–259. Springer, Berlin (2010)

    Chapter  Google Scholar 

  10. Xie, L., Shi, Y., Hou, Y.T., Lou, A.: Wireless power transfer and applications to sensor networks. IEEE Wirel. Commun. 20, 140–145 (2013)

    Article  Google Scholar 

  11. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of Things: vision, applications and research challenges. Ad Hoc Netw. 10, 1497–1516 (2012)

    Article  Google Scholar 

  12. Swan, M.: Sensor mania! the Internet of Things, wearable computing, objective metrics, and the quantified self 2.0. J. Sens. Actuator Netw. 1, 217–253 (2012)

    Article  Google Scholar 

  13. Yuan, F., Jin, S., Wong, K.K., Zhao, J., Zhu, H.: Wireless information and power transfer design for energy cooperation distributed antenna systems. IEEE Access 5, 8094–8105 (2017)

    Article  Google Scholar 

  14. Chawla, N., Tosunoglu, S.: State of the art in inductive charging for electronic appliances and its future in transportation. In: 2012 Florida Conference on Recent Advances in Robotics, pp. 1–7 (2012)

    Google Scholar 

  15. Lu, X., Wang, P., Niyato, D., Kim, D.I., Han, Z.: Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun. Surv. Tutor. 18, 1413–1452 (2016)

    Article  Google Scholar 

  16. Lu, X., Wang, P., Niyato, D., Han, Z.: Resource allocation in wireless networks with RF energy harvesting and transfer. IEEE Netw. 29, 68–75 (2015)

    Article  Google Scholar 

  17. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Q. 26, xiii–xxiii (2002)

    Google Scholar 

  18. Bryman, A.: Social Research Methods. OUP, Oxford (2012)

    Google Scholar 

  19. Ding, P.-P., Bernard, L., Pichon, L., Razek, A.: Evaluation of electromagnetic fields in human body exposed to wireless inductive charging system. IEEE Trans. Magn. 50, 1037–1040 (2014)

    Article  Google Scholar 

  20. Hui, S.Y.R., Zhong, W., Lee, C.K.: A critical review of recent progress in mid-range wireless power transfer. IEEE Trans. Power Electron. 29, 4500–4511 (2014)

    Article  Google Scholar 

  21. Zhao, B., Kuo, N.-C., Niknejad, A.M.: An inductive-coupling blocker rejection technique for miniature RFID tag. IEEE Trans. Circuits Syst. I Regul. Pap. 63, 1305–1315 (2016)

    Article  MathSciNet  Google Scholar 

  22. Galinina, O., Tabassum, H., Mikhaylov, K., Andreev, S., Hossain, E., Koucheryavy, Y.: On feasibility of 5G-grade dedicated RF charging technology for wireless-powered wearables. IEEE Wirel. Commun. 23, 28–37 (2016)

    Article  Google Scholar 

  23. Imura, T., Hori, Y.: Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula. IEEE Trans. Ind. Electron. 58, 4746–4752 (2011)

    Article  Google Scholar 

  24. Rim, C.T., Mi, C.: Wireless Power Transfer for Electric Vehicles and Mobile Devices. Wiley, Hoboken (2017)

    Book  Google Scholar 

  25. Beh, T.C., Kato, M., Imura, T., Oh, S., Hori, Y.: Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling. IEEE Trans. Ind. Electron. 60, 3689–3698 (2013)

    Article  Google Scholar 

  26. Cannon, B.L., Hoburg, J.F., Stancil, D.D., Goldstein, S.C.: Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron. 24, 1819–1825 (2009)

    Article  Google Scholar 

  27. Hui, S.: Planar wireless charging technology for portable electronic products and Qi. Proc. IEEE 101, 1290–1301 (2013)

    Article  Google Scholar 

  28. Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljačić, M.: Wireless power transfer via strongly coupled magnetic resonances. Science 317, 83–86 (2007)

    Article  MathSciNet  Google Scholar 

  29. Xie, L., Shi, Y., Hou, Y.T., Sherali, H.D.: Making sensor networks immortal: an energy-renewal approach with wireless power transfer. IEEE/ACM Trans. Netw. 20, 1748–1761 (2012)

    Article  Google Scholar 

  30. Choi, B.H., Thai, V.X., Lee, E.S., Kim, J.H., Rim, C.T.: Dipole-coil-based wide-range inductive power transfer systems for wireless sensors. IEEE Trans. Ind. Electron. 63, 3158–3167 (2016)

    Article  Google Scholar 

  31. Yeo, T.D., Kwon, D., Khang, S.T., Yu, J.W.: Design of maximum efficiency tracking control scheme for closed-loop wireless power charging system employing series resonant tank. IEEE Trans. Power Electron. 32, 471–478 (2017)

    Article  Google Scholar 

  32. Bito, J., Jeong, S., Tentzeris, M.M.: A real-time electrically controlled active matching circuit utilizing genetic algorithms for wireless power transfer to biomedical implants. IEEE Trans. Microw. Theory Tech. 64, 365–374 (2016)

    Article  Google Scholar 

  33. Dai, J., Ludois, D.C.: A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron. 30, 6017–6029 (2015)

    Article  Google Scholar 

  34. Dai, J., Ludois, D.C.: Wireless electric vehicle charging via capacitive power transfer through a conformal bumper. In: 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 3307–3313 (2015)

    Google Scholar 

  35. Boshkovska, E., Koelpin, A., Ng, D.W.K., Zlatanov, N., Schober, R.: Robust beamforming for SWIPT systems with non-linear energy harvesting model. In: 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2016)

    Google Scholar 

  36. Clerckx, B., Bayguzina, E.: Waveform design for wireless power transfer. IEEE Trans. Signal Process. 64, 6313–6328 (2016)

    Article  MathSciNet  Google Scholar 

  37. Clerckx, B., Bayguzina, E.: Low-complexity adaptive multisine waveform design for wireless power transfer. IEEE Antennas Wirel. Propag. Lett. 16, 2207–2210 (2017)

    Article  Google Scholar 

  38. Renzo, M.D., Lu, W.: System-level analysis and optimization of cellular networks with simultaneous wireless information and power transfer: stochastic geometry modeling. IEEE Trans. Veh. Technol. 66, 2251–2275 (2017)

    Article  Google Scholar 

  39. Huang, K., Lau, V.K.: Enabling wireless power transfer in cellular networks: architecture, modeling and deployment. IEEE Trans. Wirel. Commun. 13, 902–912 (2014)

    Article  Google Scholar 

  40. Bi, S., Zeng, Y., Zhang, R.: Wireless powered communication networks: an overview. IEEE Wirel. Commun. 23, 10–18 (2016)

    Article  Google Scholar 

  41. Liu, J., Li, X., Chen, X., Zhen, Y., Zeng, L.: Applications of Internet of Things on smart grid in China. In: 2011 13th International Conference on Advanced Communication Technology (ICACT), pp. 13–17 (2011)

    Google Scholar 

  42. Munoz, R., Mangues-Bafalluy, J., Vilalta, R., Verikoukis, C., Alonso-Zarate, J., Bartzoudis, N., et al.: The CTTC 5G end-to-end experimental platform: integrating heterogeneous wireless/optical networks, distributed cloud, and IoT devices. IEEE Veh. Technol. Mag. 11, 50–63 (2016)

    Article  Google Scholar 

  43. Brown, W.C.: The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 32, 1230–1242 (1984)

    Article  Google Scholar 

  44. Tesla, N.: The Problem of Increasing Human Energy: With Special Reference to the Harnessing of the Sun’s Energy. Cosimo Inc., New York (2008)

    Google Scholar 

  45. Huang, Y., Clerckx, B.: Waveform optimization for large-scale multi-antenna multi-sine wireless power transfer. In: 2016 IEEE 17th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5 (2016)

    Google Scholar 

  46. Kortuem, G., Kawsar, F., Sundramoorthy, V., Fitton, D.: Smart objects as building blocks for the Internet of Things. IEEE Internet Comput. 14, 44–51 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Helgesen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Helgesen, T., Haddara, M. (2019). Wireless Power Transfer Solutions for ‘Things’ in the Internet of Things. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Proceedings of the Future Technologies Conference (FTC) 2018. FTC 2018. Advances in Intelligent Systems and Computing, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-030-02686-8_8

Download citation

Publish with us

Policies and ethics