Skip to main content

Identification of Glioma from MR Images Using Convolutional Neural Network

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2018 (FTC 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 880))

Included in the following conference series:

Abstract

This paper presents a novel approach of classifying the type of glioma using convolutional neural network (CNN) on 2D MR images. Glioma, most common type of malignant brain tumor, and can be classified according to the type of glial cells affected. The types of gliomas are, namely, actrocytoma, oligodendroglioma and glioblastoma multiforme (GBM). Various image processing and pattern recognition techniques may be used for cancer identification and classification. Though in recent years deep learning has been proved to be efficient in computer aided diagnosis of diseases. Convolutional Neural Networks, a type of deep neural network which is generally used for classification of images, contains multiple sets of conv-pool layers for feature extraction, followed by fully-connected (FC) layers that make use of extracted features for classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ideguchi, M., Kajiwara, K., Goto, H., Sugimoto, K., Nomura, S., Ikeda, E., Suzuki, M.: MRI findings and pathological features in early-stage glioblastoma. J. NeuroOncol. 123, 289–297 (2015)

    Article  Google Scholar 

  2. El-Gamal, F., Elmogy, M., Atwan, A.: Current trends in medical image registration and fusion. Egypt. Inform. J. 17, 99–124 (2016). https://doi.org/10.1016/j.eij.2015.09.002

    Article  Google Scholar 

  3. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  4. Zeiler, M., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision, pp. 818–833 (2014)

    Google Scholar 

  5. Rajnikanth, V., Fernandes, S., Bhushan, B., Sunder, N.: Segmentation and analysis of brain tumor using tsallis entropy and regularised level set. In: 2nd International Conference on Micro-Electronics, Electromagnetics and Telecommunications. Springer, Singapore (2018)

    Google Scholar 

  6. Hoseini, F., Shahbahrami, A., Bayat, P.: An efficient implementation of deep convolutional neural networks for MRI segmentation. J. Digit. Imaging 31, 738 (2018)

    Article  Google Scholar 

  7. McGuinness, K., O’Connor, N.: A comparative evaluation of interactive segmentation algorithms. Pattern Recognit. 43, 434–444 (2010)

    Article  Google Scholar 

  8. Wang, G., Li, W., Zuluaga, M., Pratt, R., Patel, P., Aertsen, M., Doel, T., David, A., Deprest, J., Ourselin, S., Vercauteren, T.: Interactive medical image segmentation using deep learning with image-specific fine-tuning. IEEE Trans. Med. Imaging. 37, 1562 (2018)

    Google Scholar 

  9. Sadeghi-Naini, A., Suraweera, H., Tran, W., Hadizad, F., Bruni, G., Rastegar, R., Curpen, B., Czarnota, G.: Breast-lesion characterization using textural features of quantitative ultrasound parametric maps. Sci. Rep. 7, 13638 (2017)

    Google Scholar 

  10. Liu, M., Zhang, J., Nie, D., Yap, P., Shen, D.: Anatomical landmark based deep feature representation for MR images in brain disease diagnosis. IEEE J. Biomed. Health Inform. 22, 1476 (2018)

    Article  Google Scholar 

  11. Devkota, B., Alsadoon, A., Prasad, P., Singh, A., Elchouemi, A.: Image segmentation for early stage brain tumor detection using mathematical morphological reconstruction. Procedia Comput. Sci. 125, 115–123 (2018)

    Article  Google Scholar 

  12. Blumenthal, D., Artzi, M., Liberman, G., Bokstein, F., Aizenstein, O., Ben Bashat, D.: Classification of high-grade glioma into tumor and nontumor components using support vector machine. Am. J. Neuroradiol. 38, 908–914 (2017)

    Article  Google Scholar 

  13. Zacharaki, E., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E., Davatzikos, C.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. 62, 1609–1618 (2009)

    Article  Google Scholar 

  14. Liu, F., Jang, H., Kijowski, R., Bradshaw, T., McMillan, A.: Deep learning MR imaging-based attenuation correction for PET/MR imaging. Radiology 286, 676–684 (2017)

    Article  Google Scholar 

  15. Roffman, D., Hart, G., Girardi, M., Ko, C., Deng, J.: Predicting non-melanoma skin cancer via a multi-parameterized artificial neural network. Sci. Rep. 8, 1701 (2018)

    Google Scholar 

  16. Makde, V., Bhavsar, J., Jain, S., Sharma, P.: Deep neural network based classification of tumourous and non-tumorous medical images. In: International Conference on Information and Communication Technology for Intelligent Systems, pp. 199–206 (2017)

    Google Scholar 

  17. Scarpace, L., Flanders, A.E., Jain, R., Mikkelsen, T., Andrews, D.W.: Data From REMBRANDT. The Cancer Imaging Archive (2017)

    Google Scholar 

  18. Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P., Moore, S., Phillips, S., Maffitt, D., Pringle, M., Tarbox, L., Prior, F.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26, 1045–1057 (2013)

    Article  Google Scholar 

  19. Choromanska, A., Henaff, M., Mathieu, M., Arous, G., LeCun, Y.: The loss surfaces of multilayer networks. In: Artificial Intelligence and Statistic, pp. 192–204 (2015)

    Google Scholar 

  20. Kamnitsas, K., Ledig, C., Newcombe, V., Simpson, J., Kane, A., Menon, D., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017). https://doi.org/10.1016/j.media.2016.10.004

    Article  Google Scholar 

  21. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  22. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  23. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saxena, N., Sharma, R., Joshi, K., Rana, H.S. (2019). Identification of Glioma from MR Images Using Convolutional Neural Network. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Proceedings of the Future Technologies Conference (FTC) 2018. FTC 2018. Advances in Intelligent Systems and Computing, vol 880. Springer, Cham. https://doi.org/10.1007/978-3-030-02686-8_44

Download citation

Publish with us

Policies and ethics