Skip to main content

Multilevel Coding for Multiple Input Multiple Output System

  • Chapter
  • First Online:
Computational Intelligence and Sustainable Systems

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

The future wireless communication system focuses on high data rate and reliability to cater the next generation technologies such as internet of things (IoT), real time voice calls etc., which would produce enormous real time multimedia data. In order to overcome the challenges, next generation wireless communication systems rely on MIMO techniques, which provide improved capacity without sacrificing the power and bandwidth. Many novel signal processing techniques have evolved in the past two decades for MIMO systems such as Spatial Multiplexing (SML), Space Time Coding (STC), Antenna Beamforming, Spatial Modulation (SM) and hybridization of the above mentioned techniques. In all these techniques, the computational complexity is the major problem when a high data rate is considered. This chapter focuses on computational complexity of the multilevel MIMO system and also investigates the performance of the multilevel MIMO system over varied channel conditions. Variations of Multilevel MIMO technique such as multilevel spatial modulation (MLSM) and Hybrid Multilevel (HML) Modulation scheme have been investigated and analyzed with low complex sequential decoding algorithm. Further, multilevel MIMO-OFDM systems MLSTTC-OFDM, MLSM-OFDM and HML-OFDM have also been compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, D., Tarokh, V., Naguib, A., & Seshadri, N. (1998). Space-time coded OFDM for high data-rate wireless communication over wideband channels. IEEE Vehicular Technology Conference, 3, 2232–2236. https://doi.org/10.1109/VETEC.1998.686154.

    Article  Google Scholar 

  • Alamouti, S. M. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal of Selected Areas in Communications, 16(8), 1451–1458.

    Article  Google Scholar 

  • Baghaie, M. A. (2008). Multilevel space time trellis codes for Rayleigh fading channels (ME thesis). University of Canterbury, New Zealand.

    Google Scholar 

  • Baghaie, M. A., Martin, P. A., & Taylor, D. P. (2010). Grouped multilevel space time trellis codes. IEEE Communications Letter, 14(3), 232–234.

    Article  Google Scholar 

  • Bäro, S., Bauch, G., & Hansmann, A. (2000). Improved codes for space–time trellis-coded modulation. IEEE Communications Letters, 4(1), 20–22.

    Article  Google Scholar 

  • Basar, E., Aygolu, U., Panayirci, E., & Poor, V. H. (2011a). New trellis code design for spatial modulation. IEEE Transactions on Wireless Communications, 10(8), 2670–2680.

    Article  Google Scholar 

  • Basar, E., Aygölü, U., Panayırcı, E., & Poor, V. H. (2011b). Space-time block coded spatial modulation. IEEE Transactions on Communications, 59(3), 823–832.

    Article  MATH  Google Scholar 

  • Calderbank, A. R. (1989). Multilevel codes and multistage decoding. IEEE Transactions on Communications, 37(3), 222–229.

    Article  MathSciNet  MATH  Google Scholar 

  • Calderbank, A. R. (1998). The art of signalling: Fifty years of coding theory. IEEE Transactions on Information Theory, 44(6), 2561–2595.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, Z., Yuan, J., & Vucetic, B. (2001). An improved space-time trellis coded modulation scheme on slow Rayleigh fading channels. Proceeding of IEEE International Conference on Communications, 4(0), 1110–1116. https://doi.org/10.1109/ICC.2001.936829.

    Article  Google Scholar 

  • Fochini, G. J. (1996). Layered space time architecture for wireless communication in a fading environment when using multi element antenna. Bell Labs Technical Journal, 1(2), 41–59.

    Article  Google Scholar 

  • Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(3), 311–335.

    Article  Google Scholar 

  • Goldsmith, A. (2005). Wireless communications. New York: Cambridge University Press.

    Book  Google Scholar 

  • Gore, D. A., & Paulraj, A. J. (2002). MIMO antenna subset selection with space time coding. IEEE Transactions on Signal Processing, 50(10), 2580–2588.

    Article  Google Scholar 

  • Humadi, K. M., Sulyman, A. I., & Alsanie, A. (2014). Spatial modulation concept for massive multiuser MIMO systems, International Journal of Antennas and Propagation, 2014, Article ID 563273, 1–9.

    Article  Google Scholar 

  • Jeganathan, J., Ghrayeb, A., & Szczecinski, L. (2008). Generalized space shift keying modulation for MIMO channels. IEEE PIMRC, 1–5. https://doi.org/10.1109/PIMRC.2008.4699782.

  • Jain, D., & Sharma, S. (2013). Adaptive generator sequence selection in multilevel space–time trellis codes. Wireless Personal Communications, 75(4), 1851–1862.

    Article  Google Scholar 

  • Jain, D., & Sharma, S. (2014). Adaptively grouped multilevel space-time trellis codes. Wireless Personal Communications, 74, 415–426.

    Article  Google Scholar 

  • Kavitha, K., & Mangalam, H. (2014). Multilevel spatial multiplexing –space time trellis coded modulation system for fast fading MIMO Channel. International Journal of Engineering and Technology, 6(1), 217–222.

    Google Scholar 

  • Kavitha, K., & Mangalam, H. (2016a). Low complexity decoding algorithm for multilevel space time trellis codes over MIMO channel. International Journal of Information and Communication Technology, 8(1), 69–78.

    Article  Google Scholar 

  • Kavitha, K., & Mangalam, H. (2016b). Multilevel spatial modulation. Journal of the Chinese Institute of Engineers, 39(6), 713–721. https://doi.org/10.1080/02533839.2016.1187083.

    Article  Google Scholar 

  • Kavitha, K., Kumaresan, A., & Arun Kumar, S. (2017). Performance analysis of multilevel spatial modulation OFDM technique (MLSM-MIMO). International Journal of Pure and Applied Mathematics, 116(11), 101–109.

    Google Scholar 

  • Lampe, L. H. J., Schober, R., & Fischer, R. F. H. (2004). Multilevel coding for multiple-antenna transmission. IEEE Transactions on Wireless Communications, 3(1), 203–208.

    Article  Google Scholar 

  • Li, Y. G., Winters, J. H., & Sollenberger, N. R. (2002). MIMO-OFDM for wireless communications: Signal detection with enhanced channel estimation. IEEE Transactions on Communications, 50(9), 1471–1477.

    Article  Google Scholar 

  • Li, C. M., Li, G. W., & Liu, H. Y. (2012). Performance comparison of the STBCOFDM decoders in a fast fading channel. Journal of Marine Science and Technology, 20(5), 534–540.

    Google Scholar 

  • Lozano, A., & Papadias, C. (2002). Layered space–time receivers for frequency-selective wireless channels. IEEE Transactions on Communications, 50, 65–73.

    Article  Google Scholar 

  • Ma, S.-C. (2013). Extended space-time multilevel coded spatial modulation. Journal of the Chinese Institute of Engineers, 36(6), 715–720.

    Article  Google Scholar 

  • Martin, P. A., Rankin, D. M., & Taylor, D. P. (2006). Multi-dimensional space-time multilevel codes. IEEE Transactions on Wireless Communications, 5(11), 3287–3295.

    Article  Google Scholar 

  • Mesleh, R. Y., Haas, H., Sinanovi’c, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.

    Article  Google Scholar 

  • Mesleh, R., Renzo, M. D., Haas, H., & Grant, P. M. (2010). Trellis coded spatial modulation. IEEE Transactions on Wireless Communications, 9(7), 2349–2360.

    Article  Google Scholar 

  • Mietzner, J., Schober, R., Lampe, L., Gerstacker, W. H., & Hoeher, P. A. (2009). Multiple-antenna techniques for wireless communications - A comprehensive literature survey. IEEE communications Surveys & Tutorials, 11(2), 87–105.

    Article  Google Scholar 

  • Pourahmadi, V., Motahari, A. S., & Khandani, A. K. (2013). Multilayer codes for broadcasting over quasi-static fading MIMO networks. IEEE Transactions on Communications, 61(4), 1573–1783.

    Article  Google Scholar 

  • Renzo, M. D., & Haas, H. (2010). Performance comparison of different spatial modulation schemes in correlated fading channels. In: Proceeding of IEEE International Conference on Communications, 1–6. https://doi.org/10.1109/ICC.2010.5501948.

  • Renzo, M. D., & Haas, H. (2012). Bit error probability of SM-MIMO over generalized fading channels. IEEE Transactions on Vehicular Technology, 61(3), 1124–1144.

    Article  Google Scholar 

  • Renzo, M. D., Haas, H., & Grant, P. M. (2011). Spatial modulation for multiple-antenna wireless systems: A survey. IEEE Communications Magazine, 49, 182–191. https://doi.org/10.1109/MCOM.2011.6094024.

    Article  Google Scholar 

  • Rusek, F., Persson, D., Lau, B. K., Larsson, E., Marzetta, T., Edfors, O., & Tufvesson, F. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Article  Google Scholar 

  • Sampath, H., Talwar, S., Tellado, J., Erceg, V., & Paulraj, A. (2002). A fourth generation MIMO-OFDM broadband wireless system design, performance, and field trial results. IEEE Communications Magazines, 40, 143–149.

    Article  Google Scholar 

  • Serafemovski, N., Renzo, M. D., Sinanovic, S., Mesleh, R., & Haas, H. (2010). Fractional Bit Encoded Spatial Modulation (FBE-SM). IEEE Communications Letters, 14(5), 429–431.

    Article  Google Scholar 

  • Slaney, A., & Sun, Y. (2006). Space-time coding for wireless communications: An overview. IEE Proceedings of Communications, 153(4), 509–518.

    Article  Google Scholar 

  • Sharma, S. (2012). A novel weighted multilevel space time trellis coding Scheme. Journal of Computer and Mathematics with Applications, 63(1), 280–287.

    Article  MathSciNet  MATH  Google Scholar 

  • Stüber, G. L., Barry, J. R., Mclaughlin, S. W., Li, Y. G., Ingram, M. A., & Pratt, T. G. (2004). Broadband MIMO-OFDM wireless communications. Proceedings of IEEE, 92(2), 271–294.

    Article  Google Scholar 

  • Sugiura, S., Chen, S., & Hanzo, L. (2012). A universal space-time architecture for multiple-antenna aided systems. IEEE Communications Surveys & Tutorials, 12(2), 401–420.

    Article  Google Scholar 

  • Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance analysis and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.

    Article  MathSciNet  MATH  Google Scholar 

  • Tarokh, V., Naquib, A., Seshadri, N., & Calderbank, A. R. (1999). Combined array processing and space time coding. IEEE Transactions on Information Theory, 45(4), 1121–1128.

    Article  MathSciNet  MATH  Google Scholar 

  • Tee, R. Y. S., Alamri, O. R., Ng, S. X., & Hanzo, L. (2008). Equivalent capacity-based joint multilevel coding and space–time transmit diversity design. IEEE Transactions on Vehicular Technology, 57(5), 3006–3014.

    Article  Google Scholar 

  • Telatar, E. (1995). Capacity of multi antenna Gaussian channels. European Transactions on Telecommunications, 10(6), 585–595.

    Article  MathSciNet  Google Scholar 

  • Ungerbock, G. (1982). Channel coding with multilevel/phase signal. IEEE Transactions on Information Theory, 28(1), 55–67.

    Article  Google Scholar 

  • Wachsmann, U., Fischer, F. H., & Huber, J. B. (1999). Multilevel codes: Theoretical concepts and practical design rules. IEEE Transactions on Information Theory, 45(5), 1361–1391.

    Article  MathSciNet  MATH  Google Scholar 

  • Winters, J. H. (1998). The diversity gain of transmit diversity in wireless systems with Rayleigh fading. IEEE Transactions on Vehicular Technology, 47(1), 119–123.

    Article  Google Scholar 

  • Wolniansky, P., Foschini, G., Golden, G., & Valenzuela, R. (1998). V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. URSI International Symposium- Signals, Systems, Electronics, 295–300.

    Google Scholar 

  • Yang, P., Xiao, Y., Yu, Y., & Li, S. (2011). Adaptive spatial modulation for wireless MIMO transmission systems. IEEE Communications Letters, 15(6), 602–604.

    Article  Google Scholar 

  • Yonnis, A., Serafimovski, N., Mesleh, R., & Haas, H. (2010). Generalised spatial modulation. In: Proceeding of IEEE Asilomar Conference, Signals Systems and Computers, 1498–1502. https://doi.org/10.1109/ACSSC.2010.5757786

  • Zhang, P., Yuan, D., & Zhang, H. (2012). A novel spatial modulation scheme over correlated fading channels. Journal of Communications, 7(11), 847–857.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kavitha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kavitha, K., Mangalam, H. (2019). Multilevel Coding for Multiple Input Multiple Output System. In: Anandakumar, H., Arulmurugan, R., Onn, C. (eds) Computational Intelligence and Sustainable Systems. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-02674-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02674-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02673-8

  • Online ISBN: 978-3-030-02674-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics