Dirichlet Problem for Poisson and Bi-Poisson Equations in Clifford Analysis

  • Ümit AksoyEmail author
Part of the Trends in Mathematics book series (TM)


Dirichlet problems for Poisson equation and a second order linear equation are studied in the unit ball by using an integral representation formula with respect to the Laplacian in the complex Clifford algebra \(\mathbb {C}_m\) for m ≥ 3. Iterating the Green type kernel function, representation of the solution of the bi-Poisson equation with homogeneous Dirichlet condition is presented.


Clifford analysis Integral representations Poisson equation 

Mathematics Subject Classification (2010)

Primary 30G35; Secondary 31B10 


  1. 1.
    Ü. Aksoy, A.O. Çelebi, Dirichlet problems for generalized n-Poisson equation. Oper. Theory Adv. Appl. 205, 129–142 (2010)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Ü. Aksoy, A.O. Çelebi, Dirichlet problem for a generalized inhomogeneous polyharmonic equation in an annular domain. Complex Variables Elliptic Equ. 57, 229–241 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    H. Begehr, R.P. Gilbert, Transformations, Transmutations and Kernel Functions, vol. II (Longman, Harlow, 1993)zbMATHGoogle Scholar
  4. 4.
    H. Begehr, Complex Analytic Methods for Partial Differential Equations. An Introductory Text (World Scientific, Singapore, 1994)Google Scholar
  5. 5.
    H. Begehr, Iterations of Pompeiu operators. Mem. Differ. Equ. Math. Phys. 12, 3–21 (1997)MathSciNetzbMATHGoogle Scholar
  6. 6.
    H. Begehr, Iterated integral operators in Clifford analysis. J. Anal. Appl. 18, 361–377 (1999)MathSciNetzbMATHGoogle Scholar
  7. 7.
    H. Begehr, Representation formulas in Clifford analysis, in Acoustics, Mechanics, and the Related Topics of Mathematical Analysis, ed. by A. Wirgin (World Scientific, Singapore, 2002), pp. 8–13Google Scholar
  8. 8.
    H. Begehr, Integral representation in complex, hypercomplex and Clifford analysis. Integral Transf. Spec. Funct. 13, 223–241 (2002)MathSciNetCrossRefGoogle Scholar
  9. 9.
    H. Begehr, Boundary value problems in complex Analysis; I. II. Bol. Asoc. Mat. Venezolana XII 65–85, 217–250 (2005)MathSciNetzbMATHGoogle Scholar
  10. 10.
    H. Begehr, Biharmonic Green functions. Le Matematiche LXI, 395–405 (2006)Google Scholar
  11. 11.
    H. Begehr, Six biharmonic Dirichlet problems in complex analysis, in Function Spaces in Complex and Clifford Analysis. Proceedings of 14th International Conference Finite Infinite Dimensional Complex Analysis and Applications, ed. by H.S. Le et al. (Hue University, National University Publishers, Hanoi, 2008), pp. 243–252Google Scholar
  12. 12.
    H. Begehr, J. Dubinskii, Orthogonal decompositions of Sobolev spaces in Clifford analysis. Ann. Mat. Pura Appl. 181, 55–71 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    H. Begehr, T. Vaitekhovich, Iterated Dirichlet Problem for the higher order Poisson equations. Le Matematiche LXIII, 139–154 (2008)Google Scholar
  14. 14.
    H. Begehr, D.Q. Dai, X. Li, Integral representation formulas in polydomains. Complex Variables Theory Appl. 47, 463–484 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Begehr, Z.X. Zhang, J. Du, On Cauchy-Pompeiu formula for functions with values in a universal Clifford algebra. Acta Math. Sci. 23, 95–103 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    H. Begehr, J. Du, S.X. Zhang, On higher order Cauchy-Pompeiu formula in Clifford analysis and its applications. Gen. Math. 11, 5–26 (2003)MathSciNetzbMATHGoogle Scholar
  17. 17.
    H. Begehr, H. Otto, Z.X. Zhang, Differential operators, their fundamental solutions and related integral representations in Clifford analysis. Complex Variables Elliptic Equ. 51, 407–427 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    R.A. Blaya, J.B. Reyes, A.G. Adán, U. Kähler, On the -operator in Clifford analysis. J. Math. Anal. Appl. 434, 1138–1159 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    F. Bracks, R. Delanghe, F. Sommen, Clifford Analysis (Pitman, London, 1982)Google Scholar
  20. 20.
    J. Du, Z.X. Zhang, A Cauchy’s integral formula for functions with values in a universal Clifford algebra and its applications. Complex Variables Theory Appl. 47, 915–928 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J.E. Gilbert, M.A.M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis. (Cambridge University Press, Cambridge, 1991)Google Scholar
  22. 22.
    S. Huang, Y.Y. Qiao, G. Wen, Real and Complex Clifford Analysis. Series: Advances in Complex Analysis and Its Applications, vol. 5 (Springer, Berlin, 2006)Google Scholar
  23. 23.
    K. Gürlebeck, U. Kähler, On a spatial generalization of the complex P-operator. ZAA 15, 283–297 (1996)MathSciNetzbMATHGoogle Scholar
  24. 24.
    K. Gürlebeck, U. Kähler, On a boundary value problem of the biharmonic equation. Math. Meth. Appl. Sci. 20, 867–883 (1997)MathSciNetCrossRefGoogle Scholar
  25. 25.
    K. Gürlebeck, W. Sprößig, Quaternionic Analysis and Elliptic Boundary Value Problems (Birkhäuser Verlag, Basel 1990)CrossRefGoogle Scholar
  26. 26.
    K. Gürlebeck, W. Sprößig, Quaternionic and Clifford Calculus for Engineers and Physicists (Wiley, Chichester, 1997)zbMATHGoogle Scholar
  27. 27.
    D. Kalaj, D. Vujadinović, The solution operator of the inhomogeneous Dirichlet problem in the unit ball. Proc. Am. Math. Soc. 144, 623–635 (2016)MathSciNetCrossRefGoogle Scholar
  28. 28.
    D. Kalaj, D. Vujadinović, Gradient of solution of the Poisson equation in the unit ball and related operators (2017). arXiv:1702.00929 [math.CV]Google Scholar
  29. 29.
    E. Obolashvili, Partial Differential Equations in Clifford Analysis (Addison Wesley Longman, Harlow, 1998)Google Scholar
  30. 30.
    H. Otto, Cauchy-Pompeiusche Integraldarstellungen in der Clifford Analysis. Ph.D. thesis, FU Berlin, 2006Google Scholar
  31. 31.
    J. Ryan, Cauchy-Green type formulae in Clifford analysis. Tran. Am. Math. Soc. 347, 1331–1341 (1995)MathSciNetCrossRefGoogle Scholar
  32. 32.
    J. Ryan, Basic Clifford analysis. Cubo Math. Educ. 2, 226–256 (2000)MathSciNetzbMATHGoogle Scholar
  33. 33.
    I.N. Vekua, Generalized Analytic Functions (Pergamon Press, Oxford, 1962)zbMATHGoogle Scholar
  34. 34.
    T.N.H. Vu, Integral representations in quaternionic analysis related to Helmholtz operator. Complex Variables Theory Appl. 12, 1005–1021 (2003)MathSciNetzbMATHGoogle Scholar
  35. 35.
    T.N.H. Vu, Helmholtz operator in quaternionic analysis. PhD thesis, FU Berlin, 2005Google Scholar
  36. 36.
    Z. Xu, Boundary value problems and function theory for spin-invariant differential operators. PhD thesis, Gent State University, Gent, Belgium, 1989Google Scholar
  37. 37.
    Z.X. Zhang, Integral representations and its applications in Clifford analysis. Gen. Math. 13, 81–98 (2005)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsAtilim UniversityAnkaraTurkey

Personalised recommendations