Special Functions Method for Fractional Analysis and Fractional Modeling

  • S. V. Rogosin
  • M. V. Dubatovskaya
Part of the Trends in Mathematics book series (TM)


This is a survey paper describing the method of special functions for Fractional Calculus. We outline the main properties of special functions which are important for fractional analysis and fractional modeling. Main attention is paid to the functions of the Mittag-Leffler family and close to it the Wright functions.


Special functions Fractional integrals and derivatives Fractional equations Fractional modeling 

Mathematics Subject Classification (2010)

Primary 33E12 26A33 Secondary 34A08 34K37 35R11 60G22 



The research is partially supported by the Belarusian Fund for Fundamental Scientific Research (Project F17MS-002).


  1. 1.
    D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus: Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos, vol. 5, 2nd edn. (World Scientific Publishing, Singapore, 2016)Google Scholar
  2. 2.
    A. Bose, A. Dasgupta, H. Rubin, A contemporary review and bibliography of infinitely divisible distributions and processes. Sankhayā Indian J. Stat. 64(Ser. A, Pt. 3), 763–819 (2002)Google Scholar
  3. 3.
    L. Debnath, D. Bhatta, Integral Transforms and Their Applications, 3rd edn. (Chapman & Hall/CRC, Boca Raton, 2015)Google Scholar
  4. 4.
    K. Diethelm, The Analysis of Differential Equations of Fractional Order: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics, vol. 2004 (Springer, Berlin, 2010)Google Scholar
  5. 5.
    R. Garrappa, F. Mainardi, G. Maione, Models of dielectric relaxation based on completely monotone functions. Fract. Calc. Appl. Anal. 19(5), 1105–1160 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Gorenflo, Yu. Luchko, S.V. Rogosin, Mittag-Leffler type functions: notes on growth properties and distribution of zeros. Preprint No. A04-97, Freie Universität Berlin. Serie A. Mathematik, 1997Google Scholar
  7. 7.
    R. Gorenflo, A. Kilbas, F. Mainardi, S. Rogosin, Mittag-Leffler Functions: Related Topics and Applications (Springer, Berlin, 2014)zbMATHGoogle Scholar
  8. 8.
    A. Hanyga, Physically acceptable viscoelastic models, in Trends in Applications of Mathematics to Mechanics, ed. by K. Hutter, Y. Wang. Ber. Math. (Shaker Verlag, Aachen, 2005), pp. 125–136Google Scholar
  9. 9.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204 (Amsterdam, Elsevier, 2006)Google Scholar
  10. 10.
    Yu. Luchko, On the distribution of zeros of the Wright function. Integr. Transf. Spec. Funct. 11, 195–200 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (Imperial College Press, London, 2010)CrossRefGoogle Scholar
  12. 12.
    F. Mainardi, R. Garrappa, On complete monotonicity of the Prabhakar function and non-Debye relaxation in dielectrics. J. Comput. Phys. 293, 70–80 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    K. Miller, S. Samko, Completely monotonic functions. Integr. Transf. Spec. Funct. 12(4), 389–402 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    I. Petráš, Fractional-Order Nonlinear Systems: Modelling, Analysis and Simulation (Springer, Dordrecht, 2011)CrossRefGoogle Scholar
  15. 15.
    R.N. Pillai, On Mittag-Leffler functions and related distributions. Ann. Inst. Stat. Math. 42, 157–161 (1990)MathSciNetCrossRefGoogle Scholar
  16. 16.
    I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)zbMATHGoogle Scholar
  17. 17.
    A. Yu. Popov, A.M. Sedletskii, Zeros distribution of Mittag-Leffler functions. Contemp. Math. Fundam. Dir. 40, 3–171 (2011, in Russian). Transl. in J. Math. Sci. 190, 209–409 (2013)Google Scholar
  18. 18.
    Yu.N. Rabotnov, Elements of Hereditary Mechanics of Solids (Nauka, Moscow, 1977, in Russian)Google Scholar
  19. 19.
    M. Rivero, S.V. Rogosin, J.A. Tenreiro Machado, J.J. Trujillo, Stability of fractional order systems. Math. Probl. Eng. 2013, Article ID 356215, 14 pp.
  20. 20.
    S. Rogosin, F. Mainardi, George William Scott Blair – the pioneer of factional calculus in rheology. Commun. Appl. Ind. Math e-481 (2014). arXiv:1404.3295.v1Google Scholar
  21. 21.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science Publishers, New York, 1993)zbMATHGoogle Scholar
  22. 22.
    V.E. Tarasov, Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, New York, 2011)Google Scholar
  23. 23.
    J. Tenreiro Machado, V. Kiryakova, F. Mainardi, A poster about the old history of fractional calculus. Fract. Calc. Appl. Anal. 13(4), 447–454 (2010).
  24. 24.
    J. Tenreiro Machado, V. Kiryakova, F. Mainardi, A poster about the recent history of fractional calculus. Fract. Calc. Appl. Anal. 13(3), 329–334 (2010).
  25. 25.
    I.V. Tikhonov, Yu.S. Éidel’man, Inverse scattering transform for differential equations in Banach space and the distribution of zeros of an entire Mittag-Leffler type function. Differentsial’nye Uravneniya [Diff. Equ]. 38(5), 637–644 (2002)Google Scholar
  26. 26.
    V.V. Uchaikin, Method of Fractional Derivatives (Artishock, Ulyanovsk, 2008, in Russian)Google Scholar
  27. 27.
    V.V. Uchaikin, Fractional Derivatives for Physicists and Engineers, vols. I, II (Springer, Berlin; Higher Education Press, Beijing, 2013)CrossRefGoogle Scholar
  28. 28.
    V. Volterra, Opere matematiche: memorie e note, vols. I–V. Accademia Nazionale dei Lincei, Roma, Cremonese (1954/1962)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • S. V. Rogosin
    • 1
  • M. V. Dubatovskaya
    • 1
  1. 1.Department of EconomicsBelarusian State UniversityMinskBelarus

Personalised recommendations