Skip to main content

The String Equation for Some Rational Functions

  • Chapter
  • First Online:

Part of the book series: Trends in Mathematics ((TM))

Abstract

For conformal maps defined in the unit disk one can define a certain Poisson bracket that involves the harmonic moments of the image domain. When this bracket is applied to the conformal map itself together with its conformally reflected map the result is identically one. This is called the string equation, and it is closely connected to the governing equation, the Polubarinova-Galin equation, for the evolution of a Hele-Shaw blob of a viscous fluid (or, by another name, Laplacian growth). For non-univalent analytic functions the Poisson bracket may become ambiguous, hence the string equation need not make sense. In the present paper we show that for a certain class of (non-univalent) rational functions related to quadrature Riemann surfaces, the string equation does make sense, and holds.

Dedicated to Heinrich Begehr, on the occasion of his 80th birthday

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. P.J. Davis, The Schwarz Function and Its Applications. The Carus Mathematical Monographs, No. 17 (The Mathematical Association of America, Buffalo, 1974). MR 0407252 (53 #11031)

    Google Scholar 

  2. J. Escher, G. Simonett, Classical solutions of multidimensional Hele-Shaw models. SIAM J. Math. Anal. 28(5), 1028–1047 (1997). MR 1466667 (98i:35213)

    Article  MathSciNet  Google Scholar 

  3. B. Gustafsson, The string equation for nonunivalent functions. arXiv:1803.02030 (2018)

    Google Scholar 

  4. B. Gustafsson, The string equation for polynomials. Anal. Math. Phys. 8(4), 637–653 (2018). https://doi.org/10.1007/s13324-018-0239-3

    Article  MathSciNet  Google Scholar 

  5. B. Gustafsson, Y.-L. Lin, Non-univalent solutions of the Polubarinova-Galin equation. arXiv:1411.1909 (2014)

    Google Scholar 

  6. B. Gustafsson, V.G. Tkachev, The resultant on compact Riemann surfaces. Commun. Math. Phys. 286(1), 313–358 (2009). MR 2470933 (2009i:32015)

    Article  MathSciNet  Google Scholar 

  7. B. Gustafsson, V.G. Tkachev, On the exponential transform of multi-sheeted algebraic domains. Comput. Methods Funct. Theory 11(2), 591–615 (2011). MR 2858963

    Article  MathSciNet  Google Scholar 

  8. B. Gustafsson, A. Vasilev, Conformal and Potential Analysis in Hele-Shaw Cells. Advances in Mathematical Fluid Mechanics (Birkhäuser Verlag, Basel, 2006). MR 2245542 (2008b:76055)

    Google Scholar 

  9. B. Gustafsson, R. Teoderscu, A. Vasilev, Classical and Stochastic Laplacian Growth. Advances in Mathematical Fluid Mechanics (Birkhäuser Verlag, Basel, 2014). MR 2245542 (2008b:76055)

    Google Scholar 

  10. H. Hedenmalm, A factorization theorem for square area-integrable analytic functions. J. Reine Angew. Math. 422, 45–68 (1991). MR 1133317 (93c:30053)

    Google Scholar 

  11. H. Hedenmalm, N. Makarov, Coulomb gas ensembles and Laplacian growth. Proc. Lond. Math. Soc. (3) 106(4), 859–907 (2013). MR 3056295

    Article  MathSciNet  Google Scholar 

  12. H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces. Graduate Texts in Mathematics, vol. 199 (Springer, New York, 2000). MR 1758653 (2001c:46043)

    Book  Google Scholar 

  13. S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, A. Zabrodin, Towards unified theory of 2 d gravity. Nuclear Phys. B 380(1–2), 181–240 (1992). MR 1186584

    Article  MathSciNet  Google Scholar 

  14. I.K. Kostov, I. Krichever, M. Mineev-Weinstein, P.B. Wiegmann, A. Zabrodin, The τ-Function for Analytic Curves. Random Matrix Models and Their Applications, Math. Sci. Res. Inst. Publ., vol. 40 (Cambridge University Press, Cambridge, 2001), pp. 285–299. MR 1842792 (2002h:37145)

    Google Scholar 

  15. I. Krichever, A. Marshakov, A. Zabrodin, Integrable structure of the Dirichlet boundary problem in multiply-connected domains. Commun. Math. Phys. 259(1), 1–44 (2005). MR 2169966 (2006g:37109)

    Article  MathSciNet  Google Scholar 

  16. O.S. Kuznetsova, V.G. Tkachev, Ullemar’s formula for the Jacobian of the complex moment mapping. Complex Var. Theory Appl. 49(1), 55–72 (2004). MR 2031026 (2004k:30085)

    Article  MathSciNet  Google Scholar 

  17. H. Lamb, Hydrodynamics. Cambridge Mathematical Library, 6th edn. (Cambridge University Press, Cambridge, 1993). With a foreword by R.A. Caflisch [Russel E. Caflisch]. MR 1317348

    Google Scholar 

  18. Y.-L. Lin, Perturbation theorems for Hele-Shaw flows and their applications. Ark. Mat. 49(2), 357–382 (2011). MR 2826949

    Article  MathSciNet  Google Scholar 

  19. A.V. Marshakov, Matrix models, complex geometry, and integrable systems. I. Teoret. Mat. Fiz. 147(2), 163–228 (2006). MR 2254744 (2007j:81081)

    Google Scholar 

  20. A.V. Marshakov, Matrix models, complex geometry, and integrable systems. II. Teoret. Mat. Fiz. 147(3), 399–449 (2006). MR 2254723 (2007j:81082)

    Google Scholar 

  21. A. Marshakov, P. Wiegmann, A. Zabrodin, Integrable structure of the Dirichlet boundary problem in two dimensions. Commun. Math. Phys. 227(1), 131–153 (2002). MR 1903842 (2004a:37092)

    Article  MathSciNet  Google Scholar 

  22. M. Mineev-Weinstein, A. Zabrodin, Whitham-Toda hierarchy in the Laplacian growth problem. J. Nonlinear Math. Phys. 8(suppl), 212–218 (2001). Nonlinear evolution equations and dynamical systems (Kolimbary, 1999). MR 1821533

    Google Scholar 

  23. M. Reissig, L. von Wolfersdorf, A simplified proof for a moving boundary problem for Hele-Shaw flows in the plane. Ark. Mat. 31(1), 101–116 (1993). MR MR1230268 (94m:35250)

    Article  MathSciNet  Google Scholar 

  24. S. Richardson, Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel. J. Fluid Mech. 56, 609–618 (1972)

    Article  Google Scholar 

  25. J. Ross, D. Witt Nyström, The Hele-Shaw flow and moduli of holomorphic discs. Compos. Math. 151(12), 2301–2328 (2015). MR 3433888

    Article  MathSciNet  Google Scholar 

  26. M. Sakai, A moment problem on Jordan domains. Proc. Am. Math. Soc. 70(1), 35–38 (1978). MR 0470216 (57 #9974)

    Article  MathSciNet  Google Scholar 

  27. M. Sakai, Domains having null complex moments. Complex Variables Theory Appl. 7(4), 313–319 (1987). MR 889117 (88e:31002)

    Article  MathSciNet  Google Scholar 

  28. M. Sakai, Finiteness of the family of simply connected quadrature domains, in Potential Theory (Prague, 1987) (Plenum, New York, 1988), pp. 295–305. MR 986307 (90a:30114)

    Chapter  Google Scholar 

  29. H.S. Shapiro, The Schwarz Function and Its Generalization to Higher Dimensions. University of Arkansas, Lecture Notes in the Mathematical Sciences, 9 (Wiley, New York, 1992). A Wiley-Interscience Publication. MR 1160990 (93g:30059)

    Google Scholar 

  30. R. Teodorescu, E. Bettelheim, O. Agam, A. Zabrodin, P. Wiegmann, Normal random matrix ensemble as a growth problem. Nuclear Phys. B 704(3), 407–444 (2005). MR 2116267 (2006f:82039)

    Article  MathSciNet  Google Scholar 

  31. F.R. Tian, A Cauchy integral approach to Hele-Shaw problems with a free boundary: the case of zero surface tension. Arch. Rational Mech. Anal. 135(2), 175–196 (1996). MR 1418464 (97j:35167)

    Article  MathSciNet  Google Scholar 

  32. V.G. Tkachev, Ullemar’s formula for the moment map. II. Linear Algebra Appl. 404, 380–388 (2005). MR 2149671 (2006b:30064)

    Google Scholar 

  33. C. Ullemar, Uniqueness theorem for domains satisfying a quadrature identity for analytic functions. Research Bulletin TRITA-MAT-1980-37, Royal Institute of Technology, Department of Mathematics, Stockholm, 1980

    Google Scholar 

  34. B.L. van der Waerden, Moderne Algebra (Springer, Berlin, 1940). MR 0002841

    Chapter  Google Scholar 

  35. A.N. Varchenko, P.I. Etingof, Why the Boundary of a Round Drop Becomes a Curve of Order Four. University Lecture Series, 3rd edn. (American Mathematical Society, Providence, 1992). MR MR924157 (88k:00002)

    Google Scholar 

  36. A. Vasilev, From the Hele-Shaw experiment to integrable systems: a historical overview. Complex Anal. Oper. Theory 3(2), 551–585 (2009). MR 2504768 (2010f:76034)

    Google Scholar 

  37. P.B. Wiegmann, A. Zabrodin, Conformal maps and integrable hierarchies. Commun. Math. Phys. 213(3), 523–538 (2000). MR 1785428 (2002g:37105)

    Article  MathSciNet  Google Scholar 

  38. A. Zabrodin, Matrix models and growth processes: from viscous flows to the quantum Hall effect, in Applications of Random Matrices in Physics. NATO Sci. Ser. II Math. Phys. Chem., vol. 221 (Springer, Dordrecht, 2006), pp. 261–318. MR 2232116 (2007d:82081)

    Google Scholar 

  39. A. Zabrodin, Random matrices and Laplacian growth. The Oxford Handbook of Random Matrix Theory (Oxford University Press, Oxford, 2011), pp. 802–823. MR 2932659

    Google Scholar 

  40. L. Zalcman, Some inverse problems of potential theory, in Integral Geometry (Brunswick, Maine, 1984). Contemp. Math., vol. 63 (American Mathematical Society, Providence, 1987), pp. 337–350. MR 876329 (88e:31012)

    Google Scholar 

Download references

Acknowledgement

The author is grateful to an anonymous referee for constructive comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Gustafsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gustafsson, B. (2019). The String Equation for Some Rational Functions. In: Rogosin, S., Çelebi, A. (eds) Analysis as a Life. Trends in Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-02650-9_11

Download citation

Publish with us

Policies and ethics