Skip to main content

Revisiting Yasuda et al.’s Biometric Authentication Protocol: Are You Private Enough?

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11261))

Included in the following conference series:

  • 788 Accesses

Abstract

Biometric Authentication Protocols (\(\mathsf {BAP}\)s) have increasingly been employed to guarantee reliable access control to places and services. However, it is well-known that biometric traits contain sensitive information of individuals and if compromised could lead to serious security and privacy breaches. Yasuda et al. [23] proposed a distributed privacy-preserving \(\mathsf {BAP}\) which Abidin et al. [1] have shown to be vulnerable to biometric template recovery attacks under the presence of a malicious computational server. In this paper, we fix the weaknesses of Yasuda et al.’s \(\mathsf {BAP}\) and present a detailed instantiation of a distributed privacy-preserving \(\mathsf {BAP}\) which is resilient against the attack presented in [1]. Our solution employs Backes et al.’s [4] verifiable computation scheme to limit the possible misbehaviours of a malicious computational server.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The same leakage of information could happen if a \(\mathsf {SHE}\) scheme is used.

References

  1. Abidin, A., Mitrokotsa, A.: Security aspects of privacy-preserving biometric authentication based on ideal lattices and ring-LWE. In: Proceedings of the IEEE Workshop on Information Forensics and Security 2014 (WIFS 2014) (2014)

    Google Scholar 

  2. Babai, L.: Trading group theory for randomness. In: Proceedings of STOC 1985, pp. 421–429. ACM, New York (1985)

    Google Scholar 

  3. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical and privacy-preserving proofs on authenticated data. In: Proceedings of the 36th IEEE Symposium on Security and Privacy (Oakland) (2015)

    Google Scholar 

  4. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security, pp. 863–874. ACM (2013)

    Google Scholar 

  5. Barbosa, M., Brouard, T., Cauchie, S., de Sousa, S.M.: Secure biometric authentication with improved accuracy. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 21–36. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70500-0_3

    Chapter  Google Scholar 

  6. Bringer, J., Chabanne, H., Kraïem, F., Lescuyer, R., Soria-Vázquez, E.: Some applications of verifiable computation to biometric verification. In: 2015 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2015)

    Google Scholar 

  7. Bringer, J., Chabanne, H., Patey, A.: Privacy-preserving biometric identification using secure multiparty computation: an overview and recent trends. IEEE Sig. Process. Mag. 30(2), 42–52 (2013)

    Article  Google Scholar 

  8. Bringer, J., Chabanne, H., Patey, A.: SHADE: Secure HAmming DistancE computation from oblivious transfer. In: Adams, A.A., Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol. 7862, pp. 164–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41320-9_11

    Chapter  Google Scholar 

  9. Costello, C., et al.: Geppetto: versatile verifiable computation. In: 2015 IEEE Symposium on Security and Privacy, pp. 253–270. IEEE (2015)

    Google Scholar 

  10. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted data. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 844–855. ACM (2014)

    Google Scholar 

  11. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourcing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_25

    Chapter  Google Scholar 

  12. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009)

    Google Scholar 

  13. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  Google Scholar 

  14. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10433-6_1

    Chapter  MATH  Google Scholar 

  15. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, pp. 113–124. ACM (2011)

    Google Scholar 

  16. Pagnin, E.: Authentication under Constraints. Licentiate dissertation, Chalmers University of Technology (2016)

    Google Scholar 

  17. Pagnin, E., Dimitrakakis, C., Abidin, A., Mitrokotsa, A.: On the leakage of information in biometric authentication. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 265–280. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13039-2_16

    Chapter  MATH  Google Scholar 

  18. Pagnin, E., Mitrokotsa, A.: Privacy-preserving biometric authentication: challenges and directions. IACR Cryptology ePrint Archive 2017:450 (2017)

    Article  Google Scholar 

  19. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: Proceedings of the 2013 IEEE Symposium on Security and Privacy, pages 238–252. IEEE Computer Society, Washington (2013)

    Google Scholar 

  20. Simoens, K., Bringer, J., Chabanne, H., Seys, S.: A framework for analyzing template security and privacy in biometric authentication systems. IEEE Trans. Inf. Forensics Secur. 7(2), 833–841 (2012)

    Article  Google Scholar 

  21. Simoens, K.: A framework for analyzing template security and privacy in biometric authentication systems. IEEE Trans. Inf. Forensics Secur. 7(2), 833–841 (2012)

    Article  Google Scholar 

  22. Stoianov, A.: Cryptographically secure biometrics. In: SPIE 7667, Biometric Technology for Human Identification VII, p. 76670C–12 (2010)

    Google Scholar 

  23. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Practical packing method in somewhat homomorphic encryption. In: Garcia-Alfaro, J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W.M. (eds.) DPM/SETOP -2013. LNCS, vol. 8247, pp. 34–50. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54568-9_3

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no 608743; the VR grant PRECIS no 621-2014-4845 and the STINT grant “Secure, Private & Efficient Healthcare with wearable computing” no IB2015-6001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Pagnin .

Editor information

Editors and Affiliations

A Details in the Correctness Analysis

A Details in the Correctness Analysis

In this section, we show the intermediate steps of the calculation.

The derived tags are:

figure a

The homomorphic bilinear map calculation results are:

figure b

To prove that \(W = {\mathbf {GroupEval}}(f,R_{\alpha }, R_{\beta })\) satisfies Eq. (4), we start by analysing the three factors that made up the righthand of the equation, namely: \(e(g, g)^{y_{0}^{{\mathsf {HD}}}}\cdot e(Y_{1}^{{\mathsf {HD}}}, g)^{\theta }\cdot (\hat{Y}_{2}^{({\mathsf {HD}})})^{\theta ^{2}}\).We in turn expand each one of the factors and finally compute the product of the results, evaluating it against W.

The first factor can be expanded as:

$$\begin{aligned} e(g, g)^{y_{0}^{HD}}=e(g, g)^{C_2 \cdot y_{0}^{(A)}+ C_1 \cdot y_{0}^{(B)}+ D \cdot y_{0}^{(A)}\cdot y_{0}^{(B)}} =e(g, g)^{C_2\alpha + C_1 \beta + \alpha \beta D}. \end{aligned}$$

The second factor is expanded as:

The third factor is expanded as:

Here we need to prove the right hand side is equal to W. We use a temporary variable \(P = e(g, g)^{y_{0}^{{\mathsf {HD}}}}\cdot e(Y_{1}^{{\mathsf {HD}}}, g)^{\theta }\cdot (\hat{Y}_{2}^{({\mathsf {HD}})})^{\theta ^{2}}\) to denote the expansion result of the righthand-side. The expression below proves the correctness of the second verification Eq. (4).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pagnin, E., Liu, J., Mitrokotsa, A. (2018). Revisiting Yasuda et al.’s Biometric Authentication Protocol: Are You Private Enough?. In: Capkun, S., Chow, S. (eds) Cryptology and Network Security. CANS 2017. Lecture Notes in Computer Science(), vol 11261. Springer, Cham. https://doi.org/10.1007/978-3-030-02641-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02641-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02640-0

  • Online ISBN: 978-3-030-02641-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics