Skip to main content

Privacy-Preserving Whole-Genome Variant Queries

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11261))

Included in the following conference series:

Abstract

Medical research and treatments rely increasingly on genomic data. Queries on so-called variants are of high importance in, e.g., biomarker identification and general disease association studies. However, the human genome is a very sensitive piece of information that is worth protecting. By observing queries and responses to classical genomic databases, medical conditions can be inferred. The Beacon project is an example of a public genomic querying service, which undermines the privacy of the querier as well as individuals in the database.

By secure outsourcing via secure multi-party computation (SMPC), we enable privacy-preserving genomic database queries that protect sensitive data contained in the queries and their respective responses. At the same time, we allow for multiple genomic databases to combine their datasets to achieve a much larger search space, without revealing the actual databases’ contents to third parties. SMPC is generic and allows to apply further processing like aggregation to query results.

We measure the performance of our approach for realistic parameters and achieve convincingly fast runtimes that render our protocol applicable to real-world medical data integration settings. Our prototype implementation can process a private query with 5 genetic variant conditions against a person’s exome with 100,000 genomic variants in less than 180 ms online runtime, including additional range and equality checks for auxiliary data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://genomicsandhealth.org/.

  2. 2.

    Beacon FAQs, 2).

  3. 3.

    \(\log _2 (3.2 \cdot 10^9) \approx 31.6 < 32\).

References

  1. Aziz, A., Momin, M., Hasan, M.Z., Mohammed, N., Alhadidi, D.: Secure and efficient multiparty computation on genomic data. In: 20th International Database Engineering and Applications Symposium (IDEAS 2016), pp. 278–283. ACM (2016)

    Google Scholar 

  2. Asharov, G., Halevi, S., Lindell, Y., Rabin, T.: Privacy-preserving search of similar patients in genomic data. Cryptology ePrint Archive, Report 2017/144 (2017). https://eprint.iacr.org/2017/144

  3. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer and extensions for faster secure computation. In: 20th ACM Conference on Computer and Communications Security (CCS 2013), pp. 535–548. ACM (2013)

    Google Scholar 

  4. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering GATTACA: efficient and secure testing of fully-sequenced human genomes. In: 18th ACM Conference on Computer and Communications Security (CCS 2011), pp. 691–702. ACM (2011)

    Google Scholar 

  5. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

    Chapter  Google Scholar 

  6. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_13

    Chapter  Google Scholar 

  7. Danecek, P., et al.: The variant call format and VCFtools. Bioinformatics 27(15), 2156–2158 (2011)

    Article  Google Scholar 

  8. De Cristofaro, E., Faber, S., Tsudik, G.: Secure genomic testing with size- and position-hiding private substring matching. In: 12th ACM Workshop on Privacy in the Electronic Society (WPES 2013), pp. 107–118. ACM (2013)

    Google Scholar 

  9. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-protocol secure two-party computation. In: 22th Network and Distributed System Security Symposium (NDSS 2015). The Internet Society (2015)

    Google Scholar 

  10. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

    Article  MathSciNet  Google Scholar 

  11. Fritz, M.H.Y., Leinonen, R., Cochrane, G., Birney, E.: Efficient storage of high throughput DNA sequencing data using reference-based compression. Genome Res. 21(5), 734–740 (2011)

    Article  Google Scholar 

  12. Froelicher, D., et al.: UnLynx: a decentralized system for privacy-conscious data sharing. Proc. Priv. Enhancing Technol. 4, 152–170 (2017)

    Google Scholar 

  13. Fuller, B., et al.: SoK: cryptographically protected database search. In: 38th IEEE Symposium on Security and Privacy (S&P 2017), pp. 172–191 (2017)

    Google Scholar 

  14. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  15. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: 19th ACM Conference on Theory of Computing (STOC 1987), pp. 218–229. ACM (1987)

    Google Scholar 

  16. Goodrich, M.T.: The mastermind attack on genomic data. In: 30th IEEE Symposium on Security and Privacy (S&P 2009), pp. 204–218. IEEE (2009)

    Google Scholar 

  17. Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit constructions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 443–470. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_16. http://thomaschneider.de/papers/GKS17.pdf. Full version: http://ia.cr/2017/798

    Chapter  Google Scholar 

  18. Gupta, D., Mood, B., Feigenbaum, J., Butler, K., Traynor, P.: Using intel software guard extensions for efficient two-party secure function evaluation. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 302–318. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_20

    Chapter  Google Scholar 

  19. Hamacher, K., Hubaux, J.P., Tsudik, G.: Genomic Privacy (Dagstuhl Seminar 13412). Dagstuhl Rep. 3(10), 25–35 (2014). http://drops.dagstuhl.de/opus/volltexte/2014/4426

    Google Scholar 

  20. Hasan, M.Z., Mahdi, M.S.R., Mohammed, N.: Secure count query on encrypted genomic data. In: 3rd International Workshop on Genome Privacy and Security (GenoPri 2016) (2017). https://arxiv.org/abs/1703.01534

  21. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation using garbled circuits. In: 20th USENIX Security Symposium (USENIX Security 2011). USENIX (2011)

    Google Scholar 

  22. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

    Chapter  Google Scholar 

  23. Jha, S., Kruger, L., Shmatikov, V.: Towards practical privacy for genomic computation. In: 29th IEEE Symposium on Security and Privacy (S&P 2008), pp. 216–230. IEEE (2008)

    Google Scholar 

  24. Karvelas, N., Peter, A., Katzenbeisser, S., Tews, E., Hamacher, K.: Privacy-preserving whole genome sequence processing through proxy-aided ORAM. In: 13rd Workshop on Privacy in the Electronic Society (WPES 2014), pp. 1–10. ACM (2014)

    Google Scholar 

  25. Kerschbaum, F., Beck, M., Schönfeld, D.: Inference control for privacy-preserving genome matching. CoRR abs/1405.0205 (2014). https://arxiv.org/abs/1405.0205

  26. Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 699–728. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_27

    Chapter  Google Scholar 

  27. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 83–97. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8_7. http://thomaschneider.de/papers/KS08UC.pdf. Code: http://encrypto.de/code/FairplayPF

    Chapter  MATH  Google Scholar 

  28. Li, H., et al.: The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16), 2078–2079 (2009)

    Article  Google Scholar 

  29. Lipmaa, H., Mohassel, P., Sadeghian, S.S.: Valiant’s universal circuit: improvements, implementation, and applications. IACR Cryptology ePrint Archive 2016(17) (2016). http://ia.cr/2016/017

  30. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: 3rd ACM Cloud Computing Security Workshop (CCSW 2011), pp. 113–124. ACM (2011)

    Google Scholar 

  31. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_40

    Chapter  Google Scholar 

  32. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  33. Perillo, A.M., Cristofaro, E.D.: PAPEETE: private, authorized, and fast personal genomic testing. Technical report 770 (2017). https://ia.cr/2017/770

  34. Shringarpure, S., Bustamante, C.: Privacy risks from genomic data-sharing beacons. Am. J. Hum. Genet. 97(5), 631–646 (2015)

    Article  Google Scholar 

  35. Sousa, J.S., et al.: Efficient and secure outsourcing of genomic data storage. BMC Med. Genomics 10(2), 46 (2017)

    Article  Google Scholar 

  36. Valiant, L.G.: Universal circuits (preliminary report). In: 8th ACM Symposium on Theory of Computing (STOC 1976), pp. 196–203. ACM (1976)

    Google Scholar 

  37. Wang, X.S., Huang, Y., Zhao, Y., Tang, H., Wang, X., Bu, D.: Efficient genome-wide, privacy-preserving similar patient query based on private edit distance. In: 22nd ACM Conference on Computer and Communications (CCS 2015), pp. 492–503. ACM (2015)

    Google Scholar 

  38. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Symposium on Foundations of Computer Science (FOCS 1986), pp. 162–167. IEEE (1986)

    Google Scholar 

  39. You, N., et al.: SNP calling using genotype model selection on high-throughput sequencing data. Bioinformatics 28(5), 643 (2012)

    Article  Google Scholar 

  40. Zhou, J., Cao, Z., Dong, X.: PPOPM: more efficient privacy preserving outsourced pattern matching. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 135–153. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4_7

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers and our shepherd for their valuable feedback on our paper. This work has been supported by the German Federal Ministry of Education and Research (BMBF) and by the Hessian State Ministry for Higher Education, Research and the Arts (HMWK) within CRISP (www.crisp-da.de), by the DFG as part of project E4 within the CRC 1119 CROSSING, as well as by collaborations within the BMBF-funded HiGHmed consortium.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Demmler or Sebastian Stammler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demmler, D., Hamacher, K., Schneider, T., Stammler, S. (2018). Privacy-Preserving Whole-Genome Variant Queries. In: Capkun, S., Chow, S. (eds) Cryptology and Network Security. CANS 2017. Lecture Notes in Computer Science(), vol 11261. Springer, Cham. https://doi.org/10.1007/978-3-030-02641-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02641-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02640-0

  • Online ISBN: 978-3-030-02641-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics