Skip to main content

Computational Aspects of Ideal (tn)-Threshold Scheme of Chen, Laing, and Martin

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11261))

Abstract

In CANS 2016, Chen, Laing, and Martin proposed an ideal (tn)-threshold secret sharing scheme (the CLM scheme) based on random linear code. However, in this paper we show that this scheme is essentially same as the one proposed by Karnin, Greene, and Hellman in 1983 (the KGH scheme) from privacy perspective. Further, the authors did not analyzed memory or XOR operations required to either store or calculate an inverse matrix needed for recovering the secret. In this paper, we analyze computational aspects of the CLM scheme and discuss various methods through which the inverse matrix required during the secret recovery can be obtained. Our analysis shows that for \(n \le 30\) all the required inverse matrices can be stored in memory whereas for \(30 \le n < 9000\) calculating the inverse as and when required is more appropriate. However, the CLM scheme becomes impractical for \(n > 9000\). Another method which we discuss to recover the secret in KGH scheme is to obtain only the first column of the inverse matrix using Lagrange’s interpolation however, as we show, this method can not be used with the CLM scheme. Some potential application of the secret sharing schemes are also discussed. From our analysis we conclude that the CLM scheme is neither novel nor as practical as has been suggested by Chen et al. whereas the KGH scheme is better suited for practical applications with large n.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A cryptosystem is called a “threshold cryptosystem”, if in order to decrypt an encrypted message, several parties (more than some threshold number) must cooperate in the decryption protocol [24].

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  2. Blakely, G.: Safeguarding cryptographic keys. In: Proceedings of the National Computer Conference, vol. 48, pp. 313–317 (1979)

    Google Scholar 

  3. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A new \((k, n)\)-threshold secret sharing scheme and its extension. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 455–470. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85886-7_31

    Chapter  Google Scholar 

  4. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast \((3, n)\)-threshold secret sharing scheme using exclusive-or operations. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 91(1), 127–138 (2008)

    Article  Google Scholar 

  5. Lv, C., Jia, X., Tian, L., Jing, J., Sun, M.: Efficient ideal threshold secret sharing schemes based on exclusive-or operations. In: Proceedings of 4th International Conference on Network and System Security (NSS), pp. 136–143 (2010)

    Google Scholar 

  6. Lv, C., Jia, X., Lin, J., Jing, J., Tian, L., Sun, M.: Efficient secret sharing schemes. In: Park, J.J., Lopez, J., Yeo, S.-S., Shon, T., Taniar, D. (eds.) STA 2011. CCIS, vol. 186, pp. 114–121. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22339-6_14

    Chapter  Google Scholar 

  7. Wang, Y., Desmedt, Y.: Efficient secret sharing schemes achieving optimal information rate. In: Proceedings of IEEE Information Theory Workshop (ITW) 2014, Tasmania, Australia, pp. 516–520, November 2014

    Google Scholar 

  8. Chen, L., Camble, P.T., Watkins, M.R., Henry, I.J.: Utilizing error correction (ECC) for secure secret sharing. Hewlett Packard Enterprise Development LP, World Intellectual Property Organisation. Patent Number WO2016048297 (2016). https://www.google.com/patents/WO2016048297A1?cl=en

  9. Chen, L., Laing, T.M., Martin, K.M.: Efficient, XOR-based, ideal \((t,n)\)- threshold schemes. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_28

    Chapter  Google Scholar 

  10. Karnin, E., Greene, J., Hellman, M.: On secret sharing systems. IEEE Trans. Inf. Theory 29(1), 35–41 (1983)

    Article  MathSciNet  Google Scholar 

  11. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20901-7_2

    Chapter  Google Scholar 

  12. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon codes. Commun. ACM 24(9), 583–584 (1981)

    Article  MathSciNet  Google Scholar 

  13. Berlekamp, E.R.: Algebraic Coding Theory, Revised edn. Aegean Park Press, Laguna Hills (1984). Previous publisher. McGraw-Hill, New York [1968]. ISBN 0-89412-063-8

    MATH  Google Scholar 

  14. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

    Article  MathSciNet  Google Scholar 

  15. Worsch, T.: Lower and Upper Bounds for (Sums of) Binomial Coefficients. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.9677

  16. Bunch, J.R., Hopcroft, J.E.: Triangular factorization and inversion by fast matrix multiplication. Math. Comput. 28(125), 231–236 (1974)

    Article  MathSciNet  Google Scholar 

  17. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)

    Article  MathSciNet  Google Scholar 

  18. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13(4), 354–356 (1969)

    Article  MathSciNet  Google Scholar 

  19. NTL: A Library for doing Number Theory. http://www.shoup.net/ntl/

  20. Forsythe, G.E., Leibler, R.A.: Matrix inversion by a Monte Carlo method. Math. Tables Other Aids Comput. 4(31), 127–129 (1950)

    Article  MathSciNet  Google Scholar 

  21. Liu, C.L.: Introduction to Combinatorial Mathematics. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  22. Cramer, R., Fehr, S., Stam, M.: Black-box secret sharing from primitive sets in algebraic number fields. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 344–360. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_21

    Chapter  MATH  Google Scholar 

  23. http://www.adweek.com/digital/the-25-facebok-groups-with-over-1-million-members/

  24. https://en.wikipedia.org/wiki/Threshold_cryptosystem

Download references

Acknowledgment

This publication was made possible by the NPRP award NPRP8-2158-1-423 from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayur Punekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Punekar, M., Malluhi, Q., Desmedt, Y., Wang, Y. (2018). Computational Aspects of Ideal (tn)-Threshold Scheme of Chen, Laing, and Martin. In: Capkun, S., Chow, S. (eds) Cryptology and Network Security. CANS 2017. Lecture Notes in Computer Science(), vol 11261. Springer, Cham. https://doi.org/10.1007/978-3-030-02641-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02641-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02640-0

  • Online ISBN: 978-3-030-02641-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics