Skip to main content

Educational Neuroscience: Exploring Cognitive Processes that Underlie Learning

  • Chapter
  • First Online:
Mind, Brain and Technology

Abstract

This chapter reviews the most important neurotechnologies, neuroscience approaches, and empirical research using neuroscience methods and tools in education. Four specific technologies and representative studies using them are discussed in detail: eye tracking, electroencephalography, functional magnetic resonance imaging, and functional near-infrared spectroscopy. These neurotechnologies are examined as tools that offer high temporal resolution and those that provide high spatial resolution. A separate section addresses the use of neuroscience frameworks and tools that explore social cognition, focusing specifically on collaborative learning in teams. The chapter concludes with a discussion of important challenges and implications that educational researchers must keep in mind as they design empirical studies employing approaches and technologies from cognitive, social, and affective neuroscience. These implications include ensuring adequate signal-to-noise ratios, reducing the possibility of perceptual-motor confounds that may distort data of interest, and training psychophysiological signal classifiers using tasks that represent the cognitive processes involved in the experimental task. Careful task and study design and proper interpretation of physiological data in the context of cognitive and learning performance will improve the validity of educational studies conducted with EEG, fMRI, fNIRS, and eye tracking and will improve the reliability of data and generalizability of the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Psychological Association. (2002). Glossary of psychological terms. Cognition. Retrieved from http://www.apa.org/research/action/glossary.aspx?tab=3

  • Anderson, C. W., & Bratman, J. A. (2008). Translating thoughts into actions by finding patterns in brainwave. Proceedings of the Fourteenth Yale Workshop on Adaptive and Learning Systems (pp. 1–6). Yale University, New Haven, CT.

    Google Scholar 

  • Anderson, D. E., Serences, J. T., Vogel, E. K., & Awh, E. (2014). Induced alpha rhythms track the content and quality of visual working memory representations with high temporal precision. Journal of Neuroscience, 34(22), 7587–7599.

    Article  Google Scholar 

  • Anderson, G., & Beal, C. R. (1995). Children’s recognition of inconsistencies in science texts: Multiple measures of comprehension monitoring. Applied Cognitive Psychology, 9, 261–272.

    Article  Google Scholar 

  • Anderson, J. R., Betts, S., Ferris, J. L., & Fincham, J. M. (2011). Cognitive and metacognitive activity in mathematical problem solving: Prefrontal and parietal patterns. Cognitive, Affective, & Behavioral Neuroscience, 11(1), 52–67.

    Article  Google Scholar 

  • Andreassi, J. (2007). Psychophysiology: Human behavior and physiological response. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Antonenko, P. (2016). On the same wavelength: Exploring team neurosynchrony during technology-enhanced collaborative learning. In Proceedings of the 2016 Conference of the National Association for Research in Science Teaching (p. 154), Baltimore, MD. Retrieved from: http://narst.org/annualconference/NARST_2016_Abstracts.pdf

  • Antonenko, P., & Niederhauser, D. (2010). The influence of leads on cognitive load and learning in a hypertext-assisted learning environment. Computers in Human Behavior, 26(2), 140–150.

    Article  Google Scholar 

  • Antonenko, P., Paas, F., Grabner, R., & van Gog, T. (2010). Using electroencephalography (EEG) to measure cognitive load. Educational Psychology Review, 22, 425–438.

    Article  Google Scholar 

  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation (pp. 89–195). New York: Academic Press.

    Google Scholar 

  • Ayaz, H., Shewokis, P., Bunce, S., Izzetoglu, K., Willems, B., & Onaral, B. (2012). Optical brain monitoring for operator training and mental workload assessment. NeuroImage, 59, 36–47.

    Article  Google Scholar 

  • Ayres, P. (2006). Using subjective measures to detect variations of intrinsic cognitive load within problems. Learning and Instruction, 16, 389–400.

    Article  Google Scholar 

  • Baars, B. (1986). The cognitive revolution in psychology. New York: The Guilford Press.

    Google Scholar 

  • Baars, B., & Franklin, S. (2003). How conscious experience and working memory interact. Trends in Cognitive Science, 7, 166–172.

    Article  Google Scholar 

  • Baddeley, A. D. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417–423.

    Article  Google Scholar 

  • Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (pp. 47–89). New York: Academic Press.

    Google Scholar 

  • Bartsch, F., Hamuni, G., Miskovic, V., Lang, P. J., & Keil, A. (2015). Oscillatory brain activity in the alpha range is modulated by the content of word-prompted mental imagery. Psychophysiology, 52(6), 727–735.

    Article  Google Scholar 

  • Basar, E. (2004). Memory and brain dynamics: Oscillations integrating attention, perception, learning and memory. Boca Raton, FL: CRC Press LLC.

    Book  Google Scholar 

  • Boucheix, J.-M., & Lowe, R. K. (2010). An eye tracking comparison of external pointing cues and internal continuous cues in learning from complex animations. Learning and Instruction, 20, 123–135.

    Article  Google Scholar 

  • Brünken, R., Plass, J., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist, 38(1), 53–61.

    Article  Google Scholar 

  • Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension of complex graphics. Learning and Instruction, 20, 155–166.

    Article  Google Scholar 

  • Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (pp. 1–58). New York: Academic Press.

    Google Scholar 

  • Chomsky, N. (1959). Review of Skinner’s Verbal Behavior. Language, 35, 26–58.

    Article  Google Scholar 

  • Chukoskie, L., Westerfield, M., & Townsend, J. (2017). A novel approach to training attention and gaze in ASD: A feasibility and efficacy pilot study. Developmental Neurobiology, 78, 546. https://doi.org/10.1002/dneu.22563

    Article  Google Scholar 

  • Conati, c., Jaques, N., & Muir, M. (2013). Understanding attention to adaptive hints in educational games: An eye-tracking study. International Journal of Artificial Intelligence in Education, 23, 136–161.

    Article  Google Scholar 

  • Cooke, N. J., Gorman, J. C., & Kiekel, P. A. (2008). Communication as team-level cognitive processing. In M. Letsky, N. Warner, & S. Fiore (Eds.), Macrocognition in teams: Theories and methodologies (pp. 51–64). Hants: Ashgate Publishing Ltd.

    Google Scholar 

  • Cui, X., Bray, S., Bryant, D. M., Glover, G. H., & Reiss, A. L. (2011). A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage, 54, 2808–2821.

    Article  Google Scholar 

  • De Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2010). Attention guidance in learning from a complex animation: Seeing is understanding? Learning and Instruction, 20, 111–122.

    Article  Google Scholar 

  • Dehaene, S., Spelke, E., Stanescu, R., Pinel, P., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284, 970–974.

    Article  Google Scholar 

  • Dikker, S., Wan, L., Davidesco, I., Kaggen, L., Oostrik, M., McClintock, J., et al. (2017). Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Current Biology, 27, 1375–1380.

    Article  Google Scholar 

  • Duchowski, A. T. (2007). Eye tracking methodology: Theory and practice. Berlin: Springer.

    Google Scholar 

  • Entin, E. E., & Serfaty, D. (1999). Adaptive team coordination. Human Factors, 41, 312–325.

    Article  Google Scholar 

  • Feldon, D. F. (2004). Dispelling a few myths about learning. UrbanEd, 1(4), 37–39.

    Google Scholar 

  • Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63(2), 921–935.

    Article  Google Scholar 

  • Fisch, B. (1999). Fisch and Spehlmann’s EEG primer: Basic principles of digital and analog EEG. Amsterdam: Elsevier.

    Google Scholar 

  • Gazzaniga, M. S. (Ed.). (2009). The cognitive neurosciences (4th ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  • Gerjets, P., Walter, C., Rosenstiel, W., Bogdan, M., & Zander, T. O. (2014). Cognitive state monitoring and the design of adaptive instruction in digital environments: Lessons learned from cognitive workload assessment using a passive brain-computer interface approach. Frontiers in Neuroscience, 8, 385.

    Article  Google Scholar 

  • Gerlic, I., & Jausovec, N. (1999). Multimedia: Differences in cognitive processes observed with EEG. Educational Technology Research and Development, 47(3), 5–14.

    Article  Google Scholar 

  • Gevins, A., & Smith, M. E. (2003). Neurophysiological measures of cognitive workload during human-computer interactions. Theoretical Issues in Ergonomic Science, 4, 113–131.

    Article  Google Scholar 

  • Girouard, A., Solovey, E., Hirshfield, L., Peck, E., Chauncey, K., Sassaroli, A., et al. (2010). In D. S. Tan & A. Nijholt (Eds.), From brain signals to adaptive interfaces: Using fNIRS in HCI in brain-computer interfaces (pp. 221–237). New York: Springer.

    Google Scholar 

  • Gobert, J., Sao Pedro, M., Baker, R. S., Toto, E., & Montalvo, O. (2012). Leveraging educational data mining for real time performance assessment of scientific inquiry skills within microworlds. Journal of Educational Data Mining, 4, 153–185.

    Google Scholar 

  • Goswami, U. (2004). Neuroscience and education. British Journal of Educational Psychology, 74, 1–14.

    Article  Google Scholar 

  • Grabner, R. H., & De Smedt, B. (2011). Neurophysiological evidence for the validity of verbal strategy reports in mental arithmetic. Biological Psychology, 87, 128–136.

    Article  Google Scholar 

  • Guan, Z., Lee, S., Cuddihy, E., & Ramey, J. (2006). The validity of the stimulated retrospective think-aloud method as measured by eye tracking. In Proceedings of the SIGCHI conference on Human Factors in computing systems (pp. 1253–1262).

    Chapter  Google Scholar 

  • Guillory, S., Kaldy, Z., Shukla, M., & Pomplun, M. (2014). Pupil response predicts memory strength in a visual short-term memory task. Journal of Vision, 14(10), 235–235.

    Article  Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: Wiley.

    Google Scholar 

  • Hirshfield, L. M., Solovey, E. T., Girouard, A., Kebinger, J., Jacob, R. J. K., Sassaroli, A., et al. (2009). Brain measurement for usability testing and adaptive interfaces: An example of uncovering syntactic workload with functional near infrared spectroscopy. Proceedings of the 27th International Conference on Human Factors in Computing Systems (pp. 2185–2194). Boston

    Google Scholar 

  • Hoshi, Y. (2003). Functional near-infrared optical imaging: Utility and limitations in human brain mapping. Psychophysiology, 40, 511–520.

    Article  Google Scholar 

  • Izzetoglu, K., Bunce, S., Onaral, B., Pourrezaei, K., & Chance, B. (2004). Functional optical brain imaging using near-infrared during cognitive tasks. International Jounral of Human Computer Interaction, 17(2), 211–231.

    Article  Google Scholar 

  • Jarodzka, H., Scheiter, K., Gerjets, P., & van Gog, T. (2010). In the eyes of the beholder: How experts and novices interpret dynamic stimuli. Learning and Instruction, 20, 146–154.

    Article  Google Scholar 

  • Jasper, H. A. (1958). The ten–twenty system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 371–375.

    Google Scholar 

  • Jensen, O., Gelfand, J., Kounios, J., & Lisman, J. E. (2002). Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12(8), 877–882.

    Article  Google Scholar 

  • Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15, 1395–1399.

    Article  Google Scholar 

  • Jobard, G., Crivello, F., & Tzourio-Mazoyer, N. (2003). Evaluation of the dual route theory or reading: A meta-analysis of 35 neuroimaging studies. NeuroImage, 20, 693–712.

    Article  Google Scholar 

  • Jung, K.-J., Prasad, P., Qin, Y., & Anderson, J. R. (2005). Extraction of overt verbal response from acoustic noise from the scanner in fMRI by use of segmented active noise cancellation. Magnetic Resonance Imaging, 53, 739–744.

    Google Scholar 

  • Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87(4), 329–354.

    Article  Google Scholar 

  • Karpicke, J. D., & Blunt, J. R. (2011). Retrieval practice produces more learning than elaborative studying with concept mapping. Science, 331, 772–775.

    Article  Google Scholar 

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews, 29, 169–195.

    Article  Google Scholar 

  • Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled access to stored information. Trends in Cognitive Science, 16, 606–617.

    Article  Google Scholar 

  • Klimesch, W., Doppelmayr, M., Hanslmayr, S., Christa, N., & Wolfgang, K. (2006). Upper alpha ERD and absolute power: Their meaning for memory performance. Progress in Brain Research, 159, 151–165.

    Article  Google Scholar 

  • Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63–88.

    Article  Google Scholar 

  • Klimesch, W., Schack, B., & Sauseng, P. (2005). The functional significance of theta and upper alpha oscillations for working memory: A review. Experimental Psychology, 52, 99–108.

    Article  Google Scholar 

  • Konvalinka, I., Bauer, M., Stahlhut, C., Hansen, L. K., Roepstorff, A., & Frith, C. D. (2014). Frontal alpha oscillations distinguish leaders from followers: Multivariate decoding of mutually interacting brains. NeuroImage, 94, 79–88.

    Article  Google Scholar 

  • Koole, S. L. (2009). The psychology of emotion regulation: An integrative review. Cognition and Emotion, 23(1), 4–41.

    Article  Google Scholar 

  • Martín-Loeches, M., Casado, P., Hernández-Tamames, J. A., & Álvarez-Linera, J. (2008). Brain activation in discourse comprehension: A 3t fMRI study. NeuroImage, 41, 614–622.

    Article  Google Scholar 

  • Mayer, R. E. (2010). Unique contributions of eye-tracking research to the study of learning with graphics. Learning and Instruction, 20, 167–171.

    Article  Google Scholar 

  • Mayer, R. E. (Ed.). (2014). The Cambridge handbook of multimedia learning. New York: Cambridge University Press.

    Google Scholar 

  • National Reading Panel. (2000). Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction (NIH Publication No. 00-4769). Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Neubauer, A. C., Fink, A., Grabner, R. H., Christa, N., & Wolfgang, K. (2006). Sensitivity of alpha band ERD to individual differences in cognition. Progress in Brain Research, 159, 167–178.

    Article  Google Scholar 

  • Owen, A. M., Coleman, M. R., Menon, D. K., Berry, E. L., Johnsrude, I. S., Rodd, J. M., et al. (2005). Using a hierarchical approach to investigate residual auditory cognition in persistent vegetative state. Progress in Brain Research, 150, 457–471.

    Article  Google Scholar 

  • Paas, F. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive load approach. Journal of Educational Psychology, 84, 429–434.

    Article  Google Scholar 

  • Paas, F., & van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of geometrical problem solving skills: A cognitive-load approach. Journal of Educational Psychology, 86, 122–133.

    Article  Google Scholar 

  • Parasuraman, R., & Caggiano, D. (2005). Neural and genetic assays of mental workload. In D. McBride & D. Schmorrow (Eds.), Quantifying human information processing (pp. 123–155). Lanham, MD: Rowman and Littlefield.

    Google Scholar 

  • Pernice, K., & Nielsen, J. (2009). How to conduct eyetracking studies. Fremont, CA: Nielsen Norman Group.

    Google Scholar 

  • Pfurtscheller, G., & Lopes da Silva, F. H. (2005). Event-related desynchronization (ERD) and event-related synchronization (ERS). In E. Niedermeyer & F. H. Lopes da Silva (Eds.), Electroencephalography: Basic principles, clinical applications and related fields (5th ed., pp. 1003–1016). Philadelphia: Lippincott, Williams & Wilkins.

    Google Scholar 

  • Plass, J. L., Kalyuga, S., & Leutner, D. (2010). Individual differences and cognitive load theory. In J. L. Plass, R. Moreno, & R. Brünken (Eds.), Cognitive load theory., ch. 4. New York: Cambridge Press.

    Chapter  Google Scholar 

  • Pomplun, M., Reingold, E. M., & Shen, J. (2001). Investigating the visual span in comparative search: The effects of task difficulty and divided attention. Cognition, 81(2), 57–67.

    Article  Google Scholar 

  • Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422.

    Article  Google Scholar 

  • Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., et al. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 72(1), 174–187.

    Article  Google Scholar 

  • Russell, M. (2005). Using eye-tracking data to understand first impressions of a website. Usability News, 7(1), 1–14.

    Google Scholar 

  • Scharinger, C., Kammerer, Y., & Gerjets, P. (2015). Pupil dilation and EEG alpha frequency band power reveal load on executive functions for link-selection processes during text reading. PLoS One, 10(6), e0130608.

    Article  Google Scholar 

  • Schmidt-Weigand, F., Kohert, A., & Glowalla, U. (2010). A closer look at split visual attention in system- and self-paced instruction in multimedia learning. Learning and Instruction, 20, 100–110.

    Article  Google Scholar 

  • Schneps, M. H., Thomson, J. M., Sonnert, G., Pomplun, M., Chen, C., & Heffner-Wong, A. (2013). Shorter lines facilitate reading in those who struggle. PLoS One, 8(8), e71161. https://doi.org/10.1371/journal.pone.0071161

    Article  Google Scholar 

  • Schreppel, T., Egetemeir, J., Schecklmann, M., Plichta, M. M., Pauli, P., Ellgring, H., et al. (2008). Activation of the prefrontal cortex in working memory and interference resolution processes assessed with near-infrared spectroscopy. Neuropsychobiology, 57, 188–193.

    Article  Google Scholar 

  • Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 1–66.

    Article  Google Scholar 

  • Snow, C. E., Burns, M. S., & Griffin, P. (1998). Preventing reading difficulties in young children. Washington, DC: National Academy Press.

    Google Scholar 

  • Stevens, R. H., Galloway, T. L., Wang, P., & Berka, C. (2012). Cognitive neurophysiologic synchronies: What can they contribute to the study of teamwork? Human Factors, 54(4), 489–502.

    Article  Google Scholar 

  • Stieff, M. (2011). When is a molecule three-dimensional? A task-specific role for imagistic reasoning in advanced chemistry. Science Education, 95, 310–336.

    Article  Google Scholar 

  • Strait, M., & Scheutz, M. (2014). What we can and cannot (yet) do with functional near infrared spectroscopy. Frontiers in Neuroscience, 8, 117.

    Article  Google Scholar 

  • Tschentscher, N., Hauk, O., Fischer, M. H., & Pulvermüller, F. (2012). You can count on the motor cortex: fMRI reveals embodied number processing. NeuroImage, 59, 3139–3148.

    Article  Google Scholar 

  • Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2008). Effects of studying sequences of process-oriented and product-oriented worked examples on troubleshooting transfer efficiency. Learning and Instruction, 18, 211–222.

    Article  Google Scholar 

  • Wang, J., & Antonenko, P. (2017). Instructor presence in instructional video: Effects on visual attention, recall, and perceived learning. Computers in Human Behavior, 71, 79–89.

    Article  Google Scholar 

  • Wang, J., Dawson, K., Saunders, K., Ritzhaupt, A., Antonenko, P., Lombardino, L., et al. (2018). Investigating the effects of modality and multimedia on the learning performance of college students with dyslexia. Journal of Special Education Technology, 33, 182. https://doi.org/10.1177/0162643418754530

    Article  Google Scholar 

  • Warner, N., Letsky, M., & Cowen, M. (2005). Cognitive model of team collaboration: Macro- cognitive focus. Proceedings of the 49th Human Factors and Ergonomics Society Annual Meeting, Orlando, FL.

    Google Scholar 

  • Wiley, J., Sanchez, C. A., & Jaeger, A. J. (2014). The individual differences in working memory capacity principle in multimedia learning. In R. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed.). New York: Cambridge University Press.

    Google Scholar 

  • Xie, B., & Salvendy, G. (2000). Review and reappraisal of modeling and predicting mental workload in single- and multi-task environments. Work and Stress, 14, 74–99.

    Article  Google Scholar 

  • Zago, L., Pesenti, M., Mellet, E., Crivello, F., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Neural correlates of simple and complex mental calculation. NeuroImage, 13, 314–327.

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. #1540888.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlo D. Antonenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Association for Educational Communications and Technology

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antonenko, P.D. (2019). Educational Neuroscience: Exploring Cognitive Processes that Underlie Learning. In: Parsons, T.D., Lin, L., Cockerham, D. (eds) Mind, Brain and Technology. Educational Communications and Technology: Issues and Innovations. Springer, Cham. https://doi.org/10.1007/978-3-030-02631-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02631-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02630-1

  • Online ISBN: 978-3-030-02631-8

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics