Skip to main content

To Learn or Not to Learn Features for Deformable Registration?

  • Conference paper
  • First Online:
  • 1408 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11038))

Abstract

Feature-based registration has been popular with a variety of features ranging from voxel intensity to Self-Similarity Context (SSC). In this paper, we examine the question of how features learnt using various Deep Learning (DL) frameworks can be used for deformable registration and whether this feature learning is necessary or not. We investigate the use of features learned by different DL methods in the current state-of-the-art discrete registration framework and analyze its performance on 2 publicly available datasets. We draw insights about the type of DL framework useful for feature learning. We consider the impact, if any, of the complexity of different DL models and brain parcellation methods on the performance of discrete registration. Our results indicate that the registration performance with DL features and SSC are comparable and stable across datasets whereas this does not hold for low level features. This shows that when handcrafted features are designed based on good insights into the problem at hand, they perform better or are comparable to features learnt using deep learning framework.

Aabhas Majumdar and Raghav Mehta are authors with equal contribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. De Nigris, D., et al.: Fast rigid registration of pre-operative magnetic resonance images to intra-operative ultrasound for neurosurgery based on high confidence gradient orientations. IJCARS 8(4), 649–661 (2013)

    Google Scholar 

  2. Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a survey. MedIA 24(1), 205–219 (2015)

    Google Scholar 

  3. Joshi, S., et al.: Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage 23, S151–S160 (2004)

    Article  Google Scholar 

  4. Penney, G.P., et al.: A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE TMI 17(4), 586–595 (1998)

    Google Scholar 

  5. Heinrich, M.P., et al.: Uncertainty estimates for improved accuracy of registration-based segmentation propagation using discrete optimisation. In: MICCAI Challenge Workshop on Segmentation: Algorithms, Theory and Applications (2013)

    Google Scholar 

  6. Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_24

    Chapter  Google Scholar 

  7. Heinrich, M.P., Papież, B.W., Schnabel, J.A., Handels, H.: Non-parametric discrete registration with convex optimisation. In: Ourselin, S., Modat, M. (eds.) WBIR 2014. LNCS, vol. 8545, pp. 51–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08554-8_6

    Chapter  Google Scholar 

  8. Popuri, K., Cobzas, D., Jägersand, M.: A variational formulation for discrete registration. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 187–194. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40760-4_24

    Chapter  Google Scholar 

  9. Heinrich, M.P., et al.: MIND: modality independent neighbourhood descriptor for multi-modal deformable registration. MedIA 16(7), 1423–1435 (2012)

    Google Scholar 

  10. Klein, A., et al.: Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 46(3), 786–802 (2009)

    Article  Google Scholar 

  11. Shen, D., Davatzikos, C.: HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE TMI 21(11), 1421–1439 (2002)

    Google Scholar 

  12. Ou, Y., et al.: DRAMMS: deformable registration via attribute matching and mutual-saliency weighting. MedIA 15(4), 622–639 (2011)

    Google Scholar 

  13. Shakeri, M., et al.: Prior-based coregistration and cosegmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 529–537. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_61

    Chapter  Google Scholar 

  14. Wu, G., et al.: Scalable high-performance image registration framework by unsupervised deep feature representations learning. IEEE TBME 63(7), 1505–1516 (2016)

    Google Scholar 

  15. Yang, X., et al.: Quicksilver: fast predictive image registration-a deep learning approach. NeuroImage 158, 378–396 (2017)

    Article  Google Scholar 

  16. Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-net: learning deformable image registration using shape matching. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 266–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_31

    Chapter  Google Scholar 

  17. De Brebisson, A., Montana, G.: Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE CVPR Workshops, pp. 20–28 (2015)

    Google Scholar 

  18. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)

    Google Scholar 

  19. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

    Chapter  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Nyýul, L.G., Udupa, J.K., Zhang, X.: New variants of a method of MRI scale standardization. IEEE TMI 19(2), 143–50 (2000)

    Google Scholar 

  22. Mehta, R., Sivaswamy, J.: M-net: a convolutional neural network for deep brain structure segmentation. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 437–440. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aabhas Majumdar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Majumdar, A., Mehta, R., Sivaswamy, J. (2018). To Learn or Not to Learn Features for Deformable Registration?. In: Stoyanov, D., et al. Understanding and Interpreting Machine Learning in Medical Image Computing Applications. MLCN DLF IMIMIC 2018 2018 2018. Lecture Notes in Computer Science(), vol 11038. Springer, Cham. https://doi.org/10.1007/978-3-030-02628-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02628-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02627-1

  • Online ISBN: 978-3-030-02628-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics