Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 186 Accesses

Abstract

Thus far, only tetrylidyne complexes of group 6 transition metals were discussed and the chemistry was explored to a certain extend in the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Cambridge Structural Database survey (29/02/2016) gave 50 hits of Mn complexes containing single bonds to four-coordinate Sn atoms. The Mn−Sn single bond lengths ranged from 2.455 to 2.758 Å with mean and median values of 2.619 and 2.620 Å, respectively. For the shortest and longest reported Mn−Sn single bonds, respectively, see (a) Schiemenz, B.; Ettel, F.; Huttner, G.; Zsolnai, L. J. Organomet. Chem. 1993, 458, 159; (b) Haupt, H.-J.; Preut, H.; Wolfes, W. Z. Anorg. Allg. Chem. 1978, 446, 105.

  2. 2.

    The solid state structure of 42 was also determined by single crystal X-ray diffraction analysis and showed the same structural motif and bonding parameters for the complex cation as in 41. However, due to the low quality of the two data sets for two different samples, the structure of 42 was not further considered.

  3. 3.

    The closest interionic contact (2.399 Å) exists between a F atom of the counteranion and a m-CH group of the central phenyl ring of the m-terphenyl substituent. No contacts to the Sn atom were found that are shorter than van der Waals contacts.

References

  1. Y.N. Lebedev, Multiple Bonding of Low-valent Si and Ge to Group 6 and 9 Metals, Ph.D. Thesis, The Rheinische Friedrich-Wilhelms-Universität Bonn, Verlag Dr. Hut, München, 2014

    Google Scholar 

  2. U. Chakraborty, Multiple Bonds Between Group 7 Transition Metals and Heavier Tetrel Elements (Ge-Pb), Ph.D. Thesis, The Rheinische Friedrich-Wilhelms-Universität Bonn, Verlag dr. Hut, München, 2013

    Google Scholar 

  3. A.C. Filippou, U. Chakraborty, G. Schnakenburg, Chem. Eur. J. 19, 5676 (2013)

    Article  CAS  Google Scholar 

  4. B. Blom, Reactivity of Ylenes at Late Transition Metal Centers, Ph.D. Thesis, The Rheinische Friedrich-Wilhelms-Universität Bonn, Cuvillier Verlag; Göttingen, 2011

    Google Scholar 

  5. P.G. Hayes, Z.G. Xu, C. Beddie, J.M. Keith, M.B. Hall, T.D. Tilley, J. Am. Chem. Soc. 135, 11780 (2013)

    Article  CAS  Google Scholar 

  6. D. Geiß, Neue Synthesestrategien für Übergangsmetallkomplexe mit ungesättigter germanium- und siliziumbasierter Ligandensphäre, Ph.D. Thesis, The Rheinische Friedrich-Wilhelms-Universität Bonn; Verlag Dr. Hut, München, 2015

    Google Scholar 

  7. R.S. Simons, P.P. Power, J. Am. Chem. Soc. 118, 11966 (1996)

    Article  CAS  Google Scholar 

  8. A.C. Filippou, A.I. Philippopoulos, P. Portius, D.U. Neumann, Angew. Chem. Int. Ed. 39, 2778 (2000)

    Article  CAS  Google Scholar 

  9. G.G. Hlatky, R.H. Crabtree, Coord. Chem. Rev. 65, 1 (1985)

    Article  CAS  Google Scholar 

  10. M.A. Esteruelas, L.A. Oro, Chem. Rev. 98, 577 (1998)

    Article  CAS  Google Scholar 

  11. L. Schlapbach, A. Zuttel, Nature 414, 353 (2001)

    Article  CAS  Google Scholar 

  12. W. Grochala, P.P. Edwards, Chem. Rev. 104, 1283 (2004)

    Article  CAS  Google Scholar 

  13. A.W.C. van den Berg, C.O. Arean, Chem. Commun. 668 (2008)

    Google Scholar 

  14. C. Perthuisot, M.X. Fan, W.D. Jones, Organometallics 11, 3622 (1992)

    Article  CAS  Google Scholar 

  15. G.S. Girolami, C.G. Howard, G. Wilkinson, H.M. Dawes, M. Thorntonpett, M. Motevalli, M.B. Hursthouse, J. Chem. Soc. Dalton. Trans. 921 (1985)

    Google Scholar 

  16. W.A. Herrmann, H.J. Kneuper, E. Herdtweck, Chem. Ber. 122, 437 (1989)

    Article  CAS  Google Scholar 

  17. F. Ettel, G. Huttner, L. Zsolnai, C. Emmerich, J. Organomet. Chem. 414, 71 (1991)

    Article  CAS  Google Scholar 

  18. F. Ettel, M. Schollenberger, B. Schiemenz, W. Imhof, G. Huttner, L. Zsolnai, J. Organomet. Chem. 476, 207 (1994)

    Article  CAS  Google Scholar 

  19. F. Ettel, M. Schollenberger, B. Schiemenz, G. Huttner, L. Zsolnai, J. Organomet. Chem. 476, 153 (1994)

    Article  CAS  Google Scholar 

  20. M. Weidenbruch, A. Stilter, W. Saak, K. Peters, H.G. von Schnering, J. Organomet. Chem. 560, 125 (1998)

    Article  CAS  Google Scholar 

  21. B.E. Eichler, L.H. Pu, M. Stender, P.P. Power, Polyhedron 20, 551 (2001)

    Article  CAS  Google Scholar 

  22. T.B. Grindley, R.D. Curtis, R. Thangarasa, R.E. Wasylishen, Can. J. Chem. 68, 2102 (1990)

    Article  CAS  Google Scholar 

  23. T. Matsumoto, Y. Matsui, M. Ito, K. Tatsumi, Chem-Asian J 3, 607 (2008)

    Article  CAS  Google Scholar 

  24. M.A. Stewart, C.E. Moore, T.B. Ditri, L.A. Labios, A.L. Rheingold, J.S. Figueroa, Chem. Commun. 47, 406 (2011)

    Article  CAS  Google Scholar 

  25. P. Pyykko, S. Riedel, M. Patzschke, Chem. Eur. J. 11, 3511 (2005)

    Article  Google Scholar 

  26. A.C. Filippou, P. Portius, A.I. Philippopoulos, H. Rohde, Angew. Chem. Int. Ed. 42, 445 (2003)

    Article  CAS  Google Scholar 

  27. A.C. Filippou, A.I. Philippopoulos, G. Schnakenburg, Organometallics 22, 3339 (2003)

    Article  CAS  Google Scholar 

  28. P.G. Hayes, C.W. Gribble, R. Waterman, T.D. Tilley, J. Am. Chem. Soc. 131, 4606 (2009)

    Article  CAS  Google Scholar 

  29. T.J. Hadlington, M. Hermann, J.Y. Li, G. Frenking, C. Jones, Angew. Chem. Int. Ed. 52, 10199 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyabrata Ghana .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghana, P. (2019). A New Method for the Synthesis of Manganese Tetrylidyne Complexes. In: Synthesis, Characterization and Reactivity of Ylidyne and μ-Ylido Complexes Supported by Scorpionato Ligands. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-02625-7_5

Download citation

Publish with us

Policies and ethics