Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 180 Accesses

Abstract

All experiments were carried out in an argon atmosphere under strict exclusion of oxygen and moisture using Schlenk or glove box techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    G. M. Sheldrick, SHELXS97 and SHELXL97, University of Göttingen, Germany, 1997.

  2. 2.

    The preparation of sodium naphthalenide solution in THF from sodium and naphthalene has been reported: H. C. Wang, G. Levin, M. Szwarc, J. Am. Chem. Soc. 1978, 100, 3969.

  3. 3.

    A very small amount of Tp′Mo(CO)2PMe3 (2-Mo) was always observed as an intermediate during addition. After addition was completed, the IR spectrum of the solution showed only ν(CO) bands of the metalate 3-Mo.

  4. 4.

    Complex 6-Mo is overall Cs-symmetric in solution. The coordination plane of the zwitterionic silylidene ligand defined by the atoms W, Si, CTbb and N4-dmap lies in the symmetry plane of the molecule, which also contains the pyridine ring plane of 4-dmap, whereas the aryl ring plane of the Tbb substituent lies orthogonal to the symmetry plane. This renders the two ortho CH(TMS)2 groups enantiotopic. Due to hindered rotation of the Tbb substituent about the Si-CTbb bond the two TMS groups in each CH(TMS)2 group are diastereotopic and give rise to two separate signals in the NMR spectra at low temperature. The most shielded TMS group in the 1H NMR spectrum was labeled with the character A and the other TMS group with the character B. The corresponding 13C signals were assigned by an HMQC experiment.

  5. 5.

    The C2,6-H signal of 4-dmap could not be detected at 298 K due to broadening.

  6. 6.

    Complex 6-W is overall Cs-symmetric in solution. The coordination plane of the zwitterionic silylidene ligand defined by the atoms W, Si, CTbb and N4-dmap lies in the symmetry plane of the molecule, which also contains the pyridine ring plane of 4-dmap, whereas the aryl ring plane of the Tbb substituent lies orthogonal to the symmetry plane. This renders the two ortho CH(TMS)2 groups enantiotopic. Due to hindered rotation of the Tbb substituent about the Si-CTbb bond the two TMS groups in each CH(TMS)2 group are diastereotopic and give rise to two separate signals in the NMR spectra at low temperature. The most shielded TMS group in the 1H NMR spectrum was labeled with the character A and the other TMS group with the character B. The corresponding 13C signals were assigned by an HMQC experiment. Similarly, hindered rotation of the 4-dmap group about the Si-N bond renders the C2 and C6, and the C3 and C5 positions of the pyridine ring chemically inequivalent and gives rise to four 1H and 13C NMR signals at low temperature. Using HMQC and HMBC experiments all signals could be unequivocally assigned. The most shielded signal in the 1H NMR spectrum at δ = 6.17 ppm was taken as the C3-H group.

  7. 7.

    The C2,6-H signal of 4-dmap could not be detected at 298 K due to broadening.

  8. 8.

    The composition of the diethylether solvate of 21-Mo was determined by 1H NMR spectroscopy.

  9. 9.

    The signal of MesNC was not observed in the 13{1H} NMR spectrum.

  10. 10.

    Two different Tp′ ligands on two molybdenum center can’t be differentiate from correlation spectra.

  11. 11.

    Two different Tp′ ligands on two molybdenum center can’t be differentiate from correlation spectra.

  12. 12.

    One set of CO signal is not visible because of very broadness. Some signals appear as a very broad and the Δν1/2 can’t be determine because of either overlap with other signals or because of lack of proper shape of the signal.

  13. 13.

    This signal partially overlaps with the signal at 15.52 ppm.

  14. 14.

    Only some [(η5-C5H4Me)Mn(CO)3] was additionally formed (ν(CO) in fluorobenzene: 2019 (s) and 1930 (vs) cm−1) probably by photodegradation of 35 or the dichloroplumbyl complex.

  15. 15.

    1 equiv. of Na[B(C6H3-3,5-(CF3)2)4] was used to get the corresponding plumbylidyne complex but the reaction leads to the formation of bridging complex 38. Later on, it was found that this bridging complex 38 very slowly converted to the corresponding plumbylidyne complex upon storing a fluorobenzene/n-pentane solution at −30 °C for several months (>2 months).

  16. 16.

    The ν(CO) bands of the intermediate product compare well with those of the analogous bromo-bridged complex [{(η5-C5H4Me)(CO)2MnPb(C6H3-2,6-Mes2)}2(μ-Br)][B{C6H3-3,5-(CF3)2}4], which is selectively formed in the reaction of [(η5-C5H4Me)(CO)2Mn = Pb(C6H3-2,6-Mes2)Br] with Na[B{C6H3-3,5-(CF3)2}4]. The latter compound was isolated as an analytically pure brown solid that was characterized by IR spectroscopy, 1H NMR and 13C NMR spectroscopy, and single-crystal X ray-diffraction.

  17. 17.

    The signals marked with an asterisk correspond to an AB2 spin system showing a small second-order splitting of the doublet and the triplet signal, respectively. The given 3J(H,H) coupling constant of 7.8 Hz was confirmed by simulation with the program gNMR (gNMR, Version 5.0.6.0, P. H. M. Budzelaar, IvorySoft, Centennial, USA, 2006).

References

  1. D.F. Shriver, M.A. Drezdzon, The Manipulation of Air-Sensitive Compounds (Wiley, New York, 1986)

    Google Scholar 

  2. O. Burghaus, M. Rohrer, T. Gotzinger, M. Plato, K. Mobius, Meas. Sci. Technol. 3, 765 (1992)

    Article  Google Scholar 

  3. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006)

    Article  CAS  Google Scholar 

  4. S. Trofimenko, J. Am. Chem. Soc. 89, 6288 (1967)

    Article  CAS  Google Scholar 

  5. S. Trofimenko, J. Am. Chem. Soc. 89, 3170 (1967)

    Article  CAS  Google Scholar 

  6. K.G. Bader, Metallorganische Substituenten und Hauptgruppenelemente. Beeinflussung von Struktur und Reaktivität an Komplexen mit einer Übergangsmetall-Indium Bindung, Ph. D. Thesis, Humboldt Universität zu Berlin, Berlin, 1998

    Google Scholar 

  7. A.A. Saleh, B. Pleune, J.C. Fettinger, R. Poli, Polyhedron 16, 1391 (1997)

    Article  CAS  Google Scholar 

  8. C. Perthuisot, M.X. Fan, W.D. Jones, Organometallics 11, 3622 (1992)

    Article  CAS  Google Scholar 

  9. Y.K. Park, Y.G. Lee, G.S. Kim, B. Kor, Chem. Soc. 17, 138 (1996)

    CAS  Google Scholar 

  10. R.C. Smith, J.D. Protasiewicz, Eur. J. Inorg. Chem., 998 (2004)

    Google Scholar 

  11. A. Saednya, H. Hart, Synthesis-Stuttgart, 1455 (1996)

    Google Scholar 

  12. K. Ruhlandtsenge, J.J. Ellison, R.J. Wehmschulte, F. Pauer, P.P. Power, J. Am. Chem. Soc. 115, 11353 (1993)

    Article  CAS  Google Scholar 

  13. R.S. Simons, S.T. Haubrich, B.V. Mork, M. Niemeyer, P.P. Power, Main Group Chem. 2, 275 (1998)

    Article  CAS  Google Scholar 

  14. M.L. Luetkens, A.P. Sattelberger, H.H. Murray, J.D. Basil, J.P. Fackler, R.A. Jones, D.E. Heaton, Inorg. Syn. 26, 7 (1989)

    CAS  Google Scholar 

  15. R.J. Burt, J. Chatt, W. Hussain, G.J. Leigh, J. Organomet. Chem. 182, 203 (1979)

    Article  CAS  Google Scholar 

  16. A.C. Filippou, O. Chernov, G. Schnakenburg, Chem. Eur. J. 17, 13574 (2011)

    Article  CAS  Google Scholar 

  17. O. Chernov, Novel Molecular Si(II) Precursors for Synthesis of the First Compounds with Metal-Silicon Triple Bonds, Ph. D. Thesis, Bonn Universitäts- und Landesbibliothek, Bonn, 2012

    Google Scholar 

  18. G. Brauer, Handbuch der Präparativen Anorganischen Chem. 2, 721 (1975)

    Google Scholar 

  19. J. Kouvetakis, A. Haaland, D.J. Shorokhov, H.V. Volden, G.V. Girichev, V.I. Sokolov, P. Matsunaga, J. Am. Chem. Soc. 120, 6738 (1998)

    Article  CAS  Google Scholar 

  20. A.C. Filippou, O. Chernov, B. Blom, K.W. Stumpf, G. Schnakenburg, Chem. Eur. J. 16, 2866 (2010)

    Article  CAS  Google Scholar 

  21. R.S. Simons, L.H. Pu, M.M. Olmstead, P.P. Power, Organometallics 1997, 16 (1920)

    Google Scholar 

  22. L.H. Pu, M.M. Olmstead, P.P. Power, B. Schiemenz, Organometallics 17, 5602 (1998)

    Article  CAS  Google Scholar 

  23. C. Lindlahr, Neuartige Tetrelaylidinkomplexe der Gruppe 6 mit Trialkylphosphanliganden, Ph. D Thesis, The Rheinische Friedrich-Wilhelms-Universität Bonn, Verlag Dr. Hut, München, 2015

    Google Scholar 

  24. L.H. Pu, B. Twamley, P.P. Power, Organometallics 19, 2874 (2000)

    Article  CAS  Google Scholar 

  25. N. Weidemann, Dreifachbindungen zu den schwereren homologen Elementen des Kohlenstoffs, Ph. D. Thesis, Humboldt-Universität zu Berlin, Cuvillier verlag, Göttingen, 2008

    Google Scholar 

  26. Y.N. Lebedev, Multiple Bonding of Low-valent Si and Ge to Group 6 and 9 Metals, Ph. D. Thesis, The Rheinische Friedrich-Wilhelms-Universität Bonn, Verlag Dr. Hut, München, 2014

    Google Scholar 

  27. T. Agou, N. Hayakawa, T. Sasamori, T. Matsuo, D. Hashizume, N. Tokitoh, Chem. Eur. J. 20, 9246 (2014)

    Article  CAS  Google Scholar 

  28. P. Jutzi, C. Leue, Organometallics 13, 2898 (1994)

    Article  CAS  Google Scholar 

  29. T.E. Muller, J.C. Green, D.M.P. Mingos, C.M. McPartlin, C. Whittingham, D.J. Williams, T.M. Woodroffe, J. Organomet. Chem. 551, 313 (1998)

    Google Scholar 

  30. J.L.W. Pohlmann, F.E. Brinckmann, Z. Naturforsch. B 20, 5 (1965)

    Article  Google Scholar 

  31. N.A. Yakelis, R.G. Bergman, Organometallics 24, 3579 (2005)

    Article  CAS  Google Scholar 

  32. I. Krossing, Chem. Eur. J. 7, 490 (2001)

    Article  CAS  Google Scholar 

  33. M. Brookhart, B. Grant, A.F. Volpe, Organometallics 11, 3920 (1992)

    Article  CAS  Google Scholar 

  34. W. Rudorff, E. Schulze, Z. Anorg, Allg. Chem. 277, 156 (1954)

    Article  CAS  Google Scholar 

  35. G. Becker, G. Gresser, W. Uhl, Z Naturforsch. B 36, 16 (1981)

    Article  Google Scholar 

  36. J.K. Ruff, W.J. Schlientz, R.E. Dessy, J.M. Malm, G.R. Dobson, M.N. Memering, Inorg. Syn. 15, 84 (1974)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyabrata Ghana .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghana, P. (2019). Experimental Section. In: Synthesis, Characterization and Reactivity of Ylidyne and μ-Ylido Complexes Supported by Scorpionato Ligands. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-02625-7_13

Download citation

Publish with us

Policies and ethics