Biotechnological Requirements for the Commercial Cultivation of Macrofungi: Substrate and Casing Layer

  • Jaime CarrascoEmail author
  • Maria L. Tello
  • Margarita Perez
  • Gail Preston
Part of the Fungal Biology book series (FUNGBIO)


The mushroom industry is an expanding agricultural activity with five genera covering the majority of the world’s mushroom supply: Agaricus, Pleurotus, Lentinula, auricularia and Flammulina. However, other species including members from the genera Agrocybe, Ganoderma, Volvariella, Hypsizygus, Pholiota, Grifola, Calocybe and Hericium are exploited commercially. Mushrooms provide a very healthy source of protein, vitamins and essential minerals with low caloric intake. In addition, many cultivated species are described as medicinal mushrooms and have been reported to have beneficial effects for patients with medical conditions such as cancer, diabetes, hypercholesterolemia or hypertension. Unlike many crops, mushroom cultivation is mostly performed indoors in a controlled environment, which provides protection against adverse weather conditions, and ensures that production is not subject to seasonal constraints. This chapter describes the biotechnological requirements needed to produce a commercially viable mushroom crop with a focus on the substrates employed in cultivation.


Mushroom crop Substrate Nutritional requirements Casing layer 



This article has been funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 742966. Pictures attached in the text have been kindly loaned by CTICH (Maria L Tello).


  1. Amin R, Khair A, Alam N, Lee TS (2010) Effect of different substrates and casing materials on the growth and yield of Calocybe indica. Mycobiology 38(2):97–101PubMedPubMedCentralCrossRefGoogle Scholar
  2. Carrasco J (2016) Study of cobweb disease caused by Cladobotryum mycophilum in Spanish mushroom crops. PhD thesis. Universidad de Castilla-La Mancha.
  3. Chang S, Miles PG (2004) Mushrooms: cultivation, nutritional value, medicinal effect and environmental impact, 2nd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  4. Colauto NB, da Silveira AR, da Eira AF, Linde GA (2010) Alternative to peat for Agaricus brasiliensis yield. Bioresour Technol 101(2):712–716PubMedCrossRefGoogle Scholar
  5. Eastwood D, Burton K (2002) Mushrooms-a matter of choice and spoiling oneself. Microbiol Today 29:18–23Google Scholar
  6. Falandysz J (2008) Selenium in edible mushrooms. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 26(3):256–299PubMedCrossRefGoogle Scholar
  7. Gea FJ, Tello JC, Navarro MJ (2003) Occurrence of Verticillium fungicola var. fungicola on Agaricus bitorquis mushroom crops in Spain. J Phytopathol 151(2):98–100CrossRefGoogle Scholar
  8. Harada A, Gisusi S, Yoneyama S, Aoyama M (2004) Effects of strain and cultivation medium on the chemical composition of the taste components in fruit-body of Hypsizygus marmoreus. Food Chem 84(2):265–270CrossRefGoogle Scholar
  9. Harith N, Abdullah N, Sabaratnam V (2014) Cultivation of Flammulina velutipes mushroom using various agro-residues as a fruiting substrate. Pesq Agrop Brasileira 49(3):181–188CrossRefGoogle Scholar
  10. Kabel MA, Jurak E, Mäkelä MR, de Vries RP (2017) Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation. Appl Microbiol Biotechnol 101(11):4363–4369PubMedPubMedCentralCrossRefGoogle Scholar
  11. Kleofas V, Sommer L, Fraatz MA, Zorn H, Rühl M (2014) Fruiting body production and aroma profile analysis of Agrocybe aegerita cultivated on different substrates. Nat Res 5:233–240Google Scholar
  12. Lakshmipathy R, Harikrishna P, Naidu B, Rao DB (2017) Feasibility of maize stalks for milky mushroom cultivation. Int J Curr Microbiol App Sci 6(2):1294–1299CrossRefGoogle Scholar
  13. Liang CH, Wu CY, Lu PL, Kuo YC, Liang ZC (2016) Biological efficiency and nutritional value of the culinary-medicinal mushroom Auricularia cultivated on a sawdust basal substrate supplement with different proportions of grass plants. Saudi J Biol Sci.
  14. Maszlavér P (2008) Cultivation possibilities for production of reishi Ganoderma lucidum (curt.: fr.) Karst in Hungary. Doctoral dissertation, Ph. D Thesis, Corvinus University of BudapestGoogle Scholar
  15. Mayuzumi Y, Mizuno T (1997) Cultivation methods of maitake (Grifola frondosa). Food Rev Intl 13(3):357–364CrossRefGoogle Scholar
  16. Noble R, Dobrovin-Pennington A, Hobbs PJ, Pederby J, Rodger A (2009) Volatile C8 compounds and Pseudomonads influence primordium formation of Agaricus bisporus. Mycologia 101(5):583–591PubMedCrossRefGoogle Scholar
  17. Pani BK (2012) Sporophore production of milky mushroom (Calocybe indica) as influenced by depth and time of casing. Int J Advanced Bot Res 2(1):168–170Google Scholar
  18. Pardo A, Pardo-González JE (2009) Elaboration of new substrates for cultivating Pleurotus ostreatus (Jacq..) R Kumm. Based on degraded substrates from edible fungi cultivation. ITEA 105(2):89–98Google Scholar
  19. Pardo A, De Juan AJ, Pardo J (2004) Assessment of different casing materials for use as peat alternatives in mushroom cultivation. Evaluation of quantitative and qualitative production parameters. Span J Agric Res 2(2):267–272CrossRefGoogle Scholar
  20. Pardo JE, Zied DC, Alvarez-Ortí M, Peñaranda JA, Gómez-Cantó C, Pardo-Giménez A (2017) Application of hazard analysis and critical control points (HACCP) to the processing of compost used in the cultivation of button mushroom. Int J Recycl Org Waste Agric 6(2):179–188CrossRefGoogle Scholar
  21. Pardo-Giménez A, Pardo JE, Carrasco J, Álvarez-Ortí M, Zied DC (2014) Use of Phase II mushroom compost in Agaricus subrufescens production. In; Proceedings of 8th International Conference on Mushroom Biology and Mushroom Products (ICMBMP8), New Delhi, IndiaGoogle Scholar
  22. Pardo-Giménez A, Pardo JE, Zied DC (2017) Casing materials and techniques in Agaricus bisporus cultivation. In: Diego CZ, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley-Blackwell, ChichesterGoogle Scholar
  23. Pérez-Clavijo M, Tello-Martín ML, Roncero-Ramos I, Grifoll-García V (2016) Optimization of Ganoderma lucidum cultivation and comparison of bioactive compounds in fruiting bodies, spores and mycelium. In: Proceedings of the 19th International congress on the science. Ed. Baars JJP and Sonnenberg ASMGoogle Scholar
  24. Philippoussis A, Zervakis G, Diamantopoulou P (2001) Bioconversion of agricultural lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita, Volvariella volvacea and Pleurotus spp. World J Microbiol Biotechnol 17(2):191–200CrossRefGoogle Scholar
  25. Rodriguez-Estrada AE, Jimenez-Gasco MM, Royse DJ (2009) Improvement of yield of Pleurotus eryngii var. eryngii by substrate supplementation and use of a casing overlay. Bioresour Technol 100(21):5270–5276PubMedCrossRefGoogle Scholar
  26. Royse DJ, Baars J, Tan Q (2017) Current overview of mushroom production in the world. In: Diego CZ, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley-Blackwell, ChichesterGoogle Scholar
  27. Sánchez C (2004) Modern aspects of mushroom culture technology. Appl Microbiol Biotechnol 64(6):756–762PubMedCrossRefGoogle Scholar
  28. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27(2):185–194PubMedCrossRefGoogle Scholar
  29. Sánchez C (2010) Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl Microbiol Biotechnol 85(5):1321–1337PubMedCrossRefGoogle Scholar
  30. Schardl CL, Craven KD (2003) Interspecific hybridization in plant-associated fungi and oomycetes: a review. Mol Ecol 12(11):2861–2873PubMedCrossRefGoogle Scholar
  31. Van Griensven L (1988) The cultivation of mushrooms. Darlington Mushroom Laboratories, RustingtonGoogle Scholar
  32. Vieira FR, Pecchia JA (2017) An exploration into the bacterial community under different pasteurization conditions during substrate preparation (Composting–Phase II) for Agaricus bisporus Cultivation. Microb Ecol:1–13Google Scholar
  33. Vos AM, Jurak E, Pelkmans JF, Herman K, Pels G, Baars JJ, Hendriz E, Kabel MA, Lugones LG, Wösten HA (2017a) H2O2 as a candidate bottleneck for MnP activity during cultivation of Agaricus bisporus in compost. AMB Expr 7(1):124CrossRefGoogle Scholar
  34. Vos AM, Heijboer A, Boschker HT, Bonnet B, Lugones LG, Wösten HA (2017b) Microbial biomass in compost during colonization of Agaricus bisporus. AMB Expr 7(1):12CrossRefGoogle Scholar
  35. Wu CY, Liang CH, Wu KJ, Shih HD, Liang ZC (2017) Effect of different proportions of agrowaste on cultivation yield and nutritional composition of the culinary-medicinal jelly mushroom Auricularia polytricha (higher basidiomycetes). Int J Med Mushrooms 19(4):377–385PubMedCrossRefGoogle Scholar
  36. Yamanaka K (2017) Cultivation of mushroom in plastic bottles and small bags. In: Zied DC, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Willey, HobokenGoogle Scholar
  37. Zhou XW (2017) Cultivation of Ganoderma lucidum. In: Diego CZ, Pardo-Giménez A (eds) Edible and medicinal mushrooms: technology and applications. Wiley-Blackwell, ChichesterGoogle Scholar
  38. Zhou F, Li Q, Song C, Li Z, Tan Q, Shang X, Li Y (2017) High-yield cultivating techniques of Flammulina velutipes. Agric Sci Technol 18(6):1010Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jaime Carrasco
    • 1
    Email author
  • Maria L. Tello
    • 2
  • Margarita Perez
    • 2
  • Gail Preston
    • 1
  1. 1.Department of Plant SciencesUniversity of OxfordOxfordUK
  2. 2.Centro Tecnológico de Investigación del Champiñón de La Rioja (CTICH)AutolSpain

Personalised recommendations