Antimicrobial and Hepatoprotective Activities of Edible Mushrooms

  • Jasmina Glamočlija
  • Marina Kostić
  • Marina SokovićEmail author
Part of the Fungal Biology book series (FUNGBIO)


The problem of the existence and prevalence of infectious diseases caused by pathogenic microorganisms in human society is persisted. Many studies have endeavoured to highlight the therapeutic potential of mushrooms. They can produce notable primary and secondary metabolites and could be of great benefit for humans. The largest internal vital organ in the human body is liver. It is responsible for many biochemical molecular interactions that are necessary for humankind.

The liver has multiple functions: (1) it is responsible for making important components of proteins: blood clotting factors and albumin; manufacturing cholesterol, triglycerides and bile that are used to help digest food; the liver is responsible for converting glucose into glycogen; (2) it has an important role in detoxification and allows breaking down medications, alcohols and drugs; (3) liver stores vitamines B12, A, D and K, folic acid and iron. Many diseases may have influence over liver functionality and its proper biological role. The possibilities of the edible mushroom as a general protective, potentionaly curative, antimicrobial and hepatoprotective therapeutic agent are presented in this chapter.


Edible mushrooms Hepatoprotective activity Antimicrobial activity Natural products Liver 



The authors thank Serbian Ministry of Education, Science and Technological Development for financial support (grant number 173032).


  1. Abah SE, Abah G (2010) Antimicrobial and antioxidant potentials of Agaricus bisporus. Adv Biol Res 4(5):277–282Google Scholar
  2. Ahmad N, Mahmood F, Akbar Khalil S, Zamir R, Fazal H, Abbasi BH (2014) Antioxidant activity via DPPH, gram-positive and gram-negative antimicrobial potential in edible mushrooms. Toxicol Ind Health 30(9):826–834PubMedCrossRefGoogle Scholar
  3. Akata I, Ergonul B, Kalyoncu F (2012) Chemical compositions and antioxidant activities of 16 wild edible mushroom species grown in Anatolia. Int J Pharm 8:134–138CrossRefGoogle Scholar
  4. Akyüz M, Onganer AN, Erecevit P, Kirbağ S (2010) Antimicrobial activity of some edible mushrooms in the Eastern and Southeast Anatolia region of Turkey. J Sci 3(2):125–130Google Scholar
  5. Alam N, Amin R, Khan A, Ara I, Shim MJ, Lee MW, Lee UY, Lee TS (2009) Comparative effects of oyster mushrooms on lipid profile, liver and kidney function in hyper cholesterolemic rats. Mycobiology 37(1):37–42PubMedPubMedCentralCrossRefGoogle Scholar
  6. Alves MJ, Ferreira ICFR, Martins A, Pintado M (2012a) Antimicrobial activity of wild mushroom extracts against clinical isolates resistant to different antibiotics. J Appl Microbiol 113(2):466–475PubMedCrossRefGoogle Scholar
  7. Alves M, Ferreira ICFR, Dias J, Teixeira V, Martins A, Pintado M (2012b) A Review on antimicrobial activity of mushroom (basidiomycetes) extracts and isolated compounds. Planta Med 78(16):1707–1718PubMedCrossRefGoogle Scholar
  8. Alves MJ, Ferreira ICFR, Dias J, Teixeira V, Martins A (2013) A review on antifungal activity of mushroom extracts and isolated compounds. Curr Top Med Chem 13(21):2648–2659PubMedCrossRefGoogle Scholar
  9. Andrade RJ, Tulkens PM (2011) Hepatic safety of antibiotics used in primary care. J Antimicrob Chemother 66:1431–1446PubMedPubMedCentralCrossRefGoogle Scholar
  10. Arnao MB, Cano A, Alcolea JF, Acosta M (2017) Estimation of free radical-quenching activity of leaf pigment extracts. Phytohem Anal 12(2):281–286Google Scholar
  11. Atila F, Owaid MN, Shariati MA (2017) The nutritional and medical benefits of Agaricus bisporus: a review. J Microbiol Biotechnol Food Sci 7(3):281–286CrossRefGoogle Scholar
  12. Auzinger G, Wendon J (2008) Intensive care management of acute liver failure. Curr Opin Crit Care 14(2):179–188PubMedCrossRefGoogle Scholar
  13. Babakhin AA, Logina NY, Nolte H, DuBuske LM (1996) Immunomodulating activity of the extract from high mycelium fungus Polyporus squamosus. J Allergy Clin Immunol 97:229CrossRefGoogle Scholar
  14. Barroetavena C, Toledo CV (2017) The nutritional benefits of mushrooms. In: Ferreira ICFR, Morales P, Barros L (eds) Wild plants, mushrooms and nuts: functional food properties and applications. Wiley-Blackwell, Chichester, pp 65–83Google Scholar
  15. Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira IC (2008a) Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem Toxicol 46:2742–2747CrossRefGoogle Scholar
  16. Barros L, Venturini BA, Baptista P, Estevinho LM, Ferreira ICFR (2008b) Chemical composition and biological properties of Portuguese wild mushrooms: a comprehensive study. J Agric Food Chem 56(10):3856–3862CrossRefGoogle Scholar
  17. Bawadekji A, Mridha MAU, Al Ali M, Jamith Basha W (2017) Antimicrobial activities of oyster mushroom Pleurotus ostreatus (Jacq. ex. Fr.) Kummer. J Appl Environ Biol Sci 7(10):227–231Google Scholar
  18. Bisen PS, Baghel RK, Sanodiya BS, Thakur GS, Prasad GBKS (2010) Lentinus edodes: a macrofungus with pharmacological activities. Curr Med Chem 17:2419–2430PubMedCrossRefGoogle Scholar
  19. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America. Clin Infect Dis 48(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  20. Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165–213CrossRefGoogle Scholar
  21. Caz V, Gil-Ramírez A, Santamaría M, Tabernero M, Soler-Rivas C, Martín-Hernández R, Marín FR, Reglero G, Largo C (2016) Plasma Cholesterol-lowering activity of lard functionalized with mushroom extracts is independent of niemann–pick c1-like 1 protein and abc sterol transporter gene expression in hypercholesterolemic mice. J Agr Food Chem 64(8):1686–1694CrossRefGoogle Scholar
  22. Chang ST (2006) The world mushroom industry: trends and technological development. Int J Med Mushrooms 8:297–314CrossRefGoogle Scholar
  23. Chang ST, Buswell JA (1996) Mushroom nutriceuticals. World J Microbiol Biotechnol 12(5):473–476PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chang ST, Miles P (2004) Mushrooms, 2nd edn. CRC Press LLC, Boca RatonCrossRefGoogle Scholar
  25. Chen L, Shao HJ, Su YB (2004) Coimmunization of Agaricus blazei murill extract with hepatitis B virus core protein through DNA vaccine enhances cellular and humoral immune responses. Int Immunopharmacol 4(3):403–409PubMedCrossRefGoogle Scholar
  26. Chihara G (1992) Immunopharmacology of lentinan, a polysaccharide isolated from Lentinus edodes: its application as a host defence potentiator. Int J Oriental Med 17:55Google Scholar
  27. Chowdhury M, Kubra K, Ahmed S, Barros L, Ferreira M, Queiros B et al (2015) Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Ann Clin Microbiol Antimicrob 14(1):8PubMedPubMedCentralCrossRefGoogle Scholar
  28. Ciric L, Tymon A, Zaura E, Lingstrom P, Stauder M, Papetti A, Signoretto C, Pratten J, Wilson M, Spratt D (2011) In Vitro assessment of shiitake mushroom (Lentinula edodes) extract for its antigingivitis activity. J Biomed Biotechnol:507908Google Scholar
  29. Coskun O, Kanter M, Korkmaz A, Oter S (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol Res 51:117–123PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dandapat S, Sinha MP, Kumar M, Jaggi Y (2015) Hepatoprotective efficacy of medicinal mushroom Pleurotus tuber-regium. Environ Exp Biol 13:103–108Google Scholar
  31. David B, Wolfender JL, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14:299–315CrossRefGoogle Scholar
  32. De Silva DD, Rapior S, Sudarman E, Stadler M, Xu J, Alias SA, Hyde KD (2013) Bioactive metabolites from macrofungi: ethnopharmacology, biological activities and chemistry. Fungal Divers 62:1–40CrossRefGoogle Scholar
  33. Dhanasekaran D, Latha S, Saha S, Thajuddin N, Panneerselvam A (2013) Extracellular biosynthesis, characterisation and in-vitro antibacterial potential of silver nanoparticles using Agaricus bisporus. J Exp Nanosci 8(4):579–588CrossRefGoogle Scholar
  34. Dimitrijevic M, Stankov Jovanovic V, Cvetkovic J, Mihajilov-Krstev T, Stojanovic G, Mitic V (2015) Screening of antioxidant, antimicrobial and antiradical activities of twelve selected Serbian wild mushrooms. Anal Methods 7:4181CrossRefGoogle Scholar
  35. Dimitrijević MV, Mitić VD, Stankov-Jovanović VP, Nikolić JS, Stojanović GS (2016) Comprehensive evaluation of the antioxidant activity of six wild edible mushroom species. Adv Technol 5(2):53–59CrossRefGoogle Scholar
  36. Duncan C, Pugh J, Pasco G, David N, Ross S, Samir A (2002) Isolation of a galactomannan that enhances macrophage activation from the edible fungus Morchella esculenta. J Agric Food Chem 50:5683–5685PubMedPubMedCentralCrossRefGoogle Scholar
  37. Enman J (2007) Production and quantification of eritadenine, a cholesterol reducing compound in shiitake (Lentinus edodes) [dissertation]. Luleå University of Technology Department of Chemical Engineering and Geosciences Division of Biochemical and Chemical Process EngineeringGoogle Scholar
  38. Everhart JE, Ruhl CE (2009) Burden of digestive diseases in the United States Part III: liver, biliary tract, and pancreas. Gastroenterology 136:1134–1144PubMedCrossRefGoogle Scholar
  39. FAO (2004) Wild edible fungi: a global overview of their use and importance to people. In: Non-wood forest products. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  40. FAO (2009) Make money by growing mushrooms (Elaine Marshall and N. G. (Tan) Nair) rural infrastructure and agro-industries division. Food and Agriculture Organization of the United Nations, RomeGoogle Scholar
  41. Fernandes A, Petrović J, Stojković D, Barros L, Glamočlija SM, Anabela M, Isabel F (2016) Polyporus squamosus (Huds.) Fr from different origins: chemical characterization, screening of the bioactive properties and specific antimicrobial effects against Pseudomonas aeruginosa. LWT-Food Sci Technol 69:91–97CrossRefGoogle Scholar
  42. Ferreira ICFR, Barros L, Abreu RMV (2009) Antioxidants in wild mushrooms. Curr Med Chem 16(12):1543–1560CrossRefGoogle Scholar
  43. Finimundy TC, Dillon AJP, Henriques JAP, Ely MR (2014) A Review on general nutritional compounds and pharmacological properties of the Lentinula edodes mushroom. Int J Food Sci Nutr 5:1095–1105Google Scholar
  44. Gan CH, Nurul Amira B, Asmah R (2013) Antioxidant analysis of different types of edible mushrooms (Agaricus bisporous and Agaricus brasiliensis). Int Food Res J 20(3):1095–1102Google Scholar
  45. Gargano ML, van Griensven LJLD, Isikhuemhen OS, Lindequist U, Venturella G, Wasser SP, Zervakis GI (2017) Medicinal mushrooms: valuable biological resources of high exploitation potential. Plant Biosyst 151:548–565CrossRefGoogle Scholar
  46. Gil-Ramírez A, Morales D, Soler-Rivas C (2018) Molecular actions of hypocholesterolaemic compounds from edible mushrooms. Food Funct 9:53–69PubMedCrossRefGoogle Scholar
  47. Glamočlija J, Stojković D, Nikolić M, Ćirić A, Barros L, Ferreira IC, Sokovic M (2015) Comparative study on edible agaricus mushrooms as functional foods. Food Funct 6:1900–1910PubMedCrossRefGoogle Scholar
  48. Grinde B, Hetland G, Johnson E (2006) Effects on gene expression and viral load of a medicinal extract from Agaricus blazei in patients with chronic hepatitis C infection. Int Immunopharmacol 6(8):1311–1314PubMedCrossRefGoogle Scholar
  49. Grujičić BD, Potočnik I, Duduk B, Vujčić Z (2015) Spent mushroom compost as substrate for the production of industrially important hydrolytic enzymes by fungi Trichoderma spp. and Aspergillus niger in solid state fermentation. Int Biodeterior Biodegrad 104:290–298CrossRefGoogle Scholar
  50. Guillamón E, García-Lafuente A, Lozano M, Arrigo D, Rostagno M, Villares MA et al (2010) Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia 81(7):715–723PubMedCrossRefGoogle Scholar
  51. Hassegawa RH, Kasuya MCM, Vanetti MCD (2005) Growth and antibacterial activity of Lentinula edodes in liquid media supplemented with agricultural wastes. Electron J Biotechnol 8(2):212–217CrossRefGoogle Scholar
  52. Hatvani N (2001) Antibacterial effect of the culture fluid of Lentinus edodes mycelium grown in submerged liquid culture. Int J Antimicrob Agents 17:71–74PubMedCrossRefGoogle Scholar
  53. He F, Yang Y, Yang G, Yu L (2010) Studies on antibacterial activity and antibacterial mechanism of a novel polysaccharide from Streptomyces virginia H03. Food Control 21(9):1257–1262CrossRefGoogle Scholar
  54. Hearst R, Nelson D, McCollum G, Millar BC, Maeda Y, Goldsmith CE, Rooney PJ, Loughrey A, Rao JR, Moore JE (2009) An examination of antibacterial and antifungal properties of constituents of shiitake (Lentinula edodes) and oyster (Pleurotus ostreatus) mushrooms. Complement Ther Clin Pract 15:5–7PubMedCrossRefGoogle Scholar
  55. Heleno SA, Stojković D, Barros L, Glamočlija J, Soković M, Martins A, Queiroz MJ, Ferreira I (2013) A comparative study of chemical composition, antioxidant and antimicrobial properties of Morchella esculenta (L.) Pers. from Portugal and Serbia. Food Res Int 51(1):236–243CrossRefGoogle Scholar
  56. Heleno SA, Barros L, Martins A, Morales P, Fernández Ruiz V, Glamoclija J, Sokovic M, Ferreira I (2015) Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT-Food Sci Technol 63:799–806CrossRefGoogle Scholar
  57. Hirasawa M, Shouji N, Neta T, Fukushima K, Takada K (1999) Three kinds of antibacterial substances from Lentinus edodes (Berk.) Sing. (shiitake, an edible mushroom). Int J Antimicrob Agents 11(2):151–157PubMedCrossRefPubMedCentralGoogle Scholar
  58. Hsu CH, Hwang KC, Chiang YH, Chou P (2008) The mushroom Agaricus blazei murill extract normalizes liver function in patients with chronic hepatitis B. J Altern Complement Med 14(3):299–301PubMedCrossRefGoogle Scholar
  59. Inuzuka H, Yoshida T (2002) Clinical utility of ABCL (Agaricus Mushroom Extract) treatment for C-type hepatitis. Jpn Pharmacol Ther 30:103–107Google Scholar
  60. Iwalokun BA, Usen UA, Otunba AA, Olukoya DK (2007) Comparative phytochemical evaluation, antimicrobial and antioxidant properties of Pleurotus ostreatus. Afr J Biotechnol 6:1732–1739CrossRefGoogle Scholar
  61. Jayakumar T, Ramesh E, Geraldine P (2006) Antioxidant activity of the oyster mushroom, Pleurotus ostreatus, on CCl4-induced liver injury in rats. Food Chem Toxicol 44:1989–1996PubMedCrossRefGoogle Scholar
  62. Jeong SC, Jeong YT, Yang BK, Islam R, Koyyalamudi SR, Pang G, Cho KY, Song CH (2010) White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr Res 30:49–56CrossRefGoogle Scholar
  63. Kamarudzaman AN, Chay TC, Amir A, Talib SA (2015) Biosorption of Mn (II) ions from aqueous solution by Pleurotus spent mushroom compost in a fixedbed column. Procedia Soc Behav Sci 195:2709–2716CrossRefGoogle Scholar
  64. Karaman M, Jovin E, Malbasa R, Matavuly M, Popović M (2010) Medicinal and edible lignicolous fungi as natural sources of antioxidative and antibacterial agents. Phytother Res 24:1473–1481PubMedCrossRefGoogle Scholar
  65. Karaman M, Stahl M, Vulić J, Vesić M, Canadanović-Brunet J (2014) Wild-growing lignicolous mushroom species as sources of novel agents with antioxidative and antibacterial potentials. Int J Food Sci Nutr 65(3):311–319PubMedCrossRefGoogle Scholar
  66. Keles A, Koca I, Genccelep H (2011) Antioxidant properties of wild edible mushrooms. J Food Process Technol 2:130Google Scholar
  67. Khan AA, Gani A, Ahmad M, Masoodi FA, Amin F, Kousar S (2016) Mushroom varieties found in the Himalayan regions of India: antioxidant, antimicrobial, and antiproliferative activities. Food Sci Biotechnol 25(4):1095–1100PubMedPubMedCentralCrossRefGoogle Scholar
  68. Khatua S, Ghosh S, Acharya K (2017) Laetiporus sulphureus (Bull.: Fr.) Murr. as food as medicine. Pharmacogn J 9:1–15CrossRefGoogle Scholar
  69. Klančnik A, Megušar P, Sterniša M, Jeršek B, Bucar F, Smole Možina S, Kos J, Sabotič J (2017) Aqueous extracts of wild mushrooms show antimicrobial and antiadhesion activities against bacteria and fungi. Phytother Res 31(12):1971–1976PubMedCrossRefGoogle Scholar
  70. Klaus A, Kozarski M, Vunduk J, Todorovic N, Jakovljevic D, Zizak Z et al (2015) Biological potential of extracts of the wild edible Basidiomycete mushroom Grifola frondosa. Food Res Int 67:272–283CrossRefGoogle Scholar
  71. Kostić M, Smiljković M, Petrović J, Glamočilija J, Barros L, Ferreira ICFR, Ćirić A, Soković M (2017) Chemical, nutritive composition and wide-broad bioactive properties of honey mushroom Armillaria mellea (Vahl: Fr.) Kummer. Food Funct 8:3239–3249PubMedCrossRefGoogle Scholar
  72. Kozarski M, Klaus A, Jakovljević D, Todorović N, Vunduk J, Petrović P et al (2015) Antioxidants of edible mushrooms. Molecules 20(10):19489–19525CrossRefGoogle Scholar
  73. Kubo K, Nanba H (1998) Modifications of cellular immune responses in experimental autoimmune hepatitis in mice by maitake (Grifola frondosa). Mycoscience 39:351–360CrossRefGoogle Scholar
  74. Kumar V, Yadav U (2014) Screening of antifungal activity of Pleurotus ostreatus and Agaricus bisporus. Biolife 2(3):918–923Google Scholar
  75. Kweon MH, Kwon ST, Kwon SH, Ma MS, Park YI (2002) Lowering effects in plasma cholesterol and body weight by mycelial extracts of two mushrooms: Agaricus blazei and Lentinus edodes. Korean J Microbiol Biotechnol 30:402–409Google Scholar
  76. Li M, Hu JL (2014) Study on survival strategies of farmers engage in small-scale household cultivation of edible mushrooms: take Shandong Province as an example. In: Modern economy, vol 5, pp 1092–1100. Scholar
  77. Lingstrom P, Zaura E, Hassan H, Buijs MJ, Hedelin P, Pratten J et al (2012) The anticaries effect of a food extract (shiitake) in a short-term clinical study. J Biomed Biotechnol:217164Google Scholar
  78. Liu Y, Fukuwatari Z, Okumura K, Takeda K, Ishibashi K, Furukawa M et al. (2008) Immunomodulating activity of Agaricus brasiliensis KA21 in mice and in human volunteers. eCAM 5(2):205–209PubMedGoogle Scholar
  79. Liu J, Jia L, Kan J, Jin CH (2013) In vitro and in vivo antioxidant activity of ethanolic extract of white button mushroom (Agaricus bisporus). Food Chem Toxicol 51:310–316PubMedCrossRefGoogle Scholar
  80. Liu Q, Zhu M, Geng X, Wang H, Ng TB (2017) Characterization of polysaccharides with antioxidant and hepatoprotective activities from the edible mushroom Oudemansiella radicata. Molecules 22:234–250PubMedCentralCrossRefPubMedGoogle Scholar
  81. Mau JL, Chang CN, Huang SJ, Chen CC (2004) Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces alduminosus mycelia. Food Chem 87:111–118CrossRefGoogle Scholar
  82. Mensink RP, Aro A, Den Hond E, German JB, Griffin BA, Ter Meer H-U et al (2003) PASSCLAIM-Diet-related cardiovascular disease. Eur J Nutr 42(11):1/6–1/2Google Scholar
  83. Mirunalini S, Arulmozhi V, Deepalakshmi K, Krisnaveni M (2012) Intracellular biosynthesis and antibacterial activity of silver nanoparticles using edible mushrooms. Not Sci Biol 4(4):55CrossRefGoogle Scholar
  84. Mlinarič A, Kac J, Pohleven F (2005) Screening of selected wood-damaging fungi for the HIV-1 reverse transcriptase inhibitors. Acta Pharm 55(1):69–79PubMedGoogle Scholar
  85. Mocan A, Fernandes Â, Barros L, Crişan G, Smiljković M, Soković M, Ferreira ICFR (2018) Chemical composition and bioactive properties of the wild mushroom Polyporus squamosus (Huds.) Fr: a study with samples from Romania. Food Funct 9(1):160–170PubMedCrossRefGoogle Scholar
  86. Morris HJ, Llaurado G, Beltran Y, Lebeque Y, Bermudez RC, Garcia N (2017) The use of mushrooms in the development of functional foods, drugs, and nutraceuticals. In: ICFR F, Morales P, Barros L (eds) Wild plants, mushrooms and nuts: functional food properties and applications. Wiley-Blackwell, Chichester, pp 123–159Google Scholar
  87. Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3:331–341PubMedCrossRefGoogle Scholar
  88. Mukai H, Watanabe T, Ando M, Katsumata N (2006) An alternative medicine, Agaricus blazei, may have induced severe hepatic dysfunction in cancer patients. Jpn J Clin Oncol 36(12):808–810PubMedCrossRefGoogle Scholar
  89. Muriel P (2009) Role of free radicals in liver diseases. Hepatol Int 3:526–536PubMedPubMedCentralCrossRefGoogle Scholar
  90. Navarro VJ, Senior JR (2006) Drug-related Hepatotoxicity. N Engl J Med 354:731–739PubMedCrossRefGoogle Scholar
  91. Ndungutse V, Mereddy R, Sultanbawa Y (2015) Bioactive properities of mushroom (Agaricus bisporus) stipe extracts. J Food Process Preserv 39:2225–2233CrossRefGoogle Scholar
  92. Nehra K, Kumar M, Yadav A (2012) Evaluation of antimicrobial potential of fruiting body extracts of Pleurotus ostreatus (oyster mushroom). Int J Microbial Resour Technol 1(4):391–400Google Scholar
  93. Ngai PHK, Ng TB (2003) Lentin, a novel and potent antifungal protein from shiitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells. Life Sci 73:3363–3364PubMedCrossRefGoogle Scholar
  94. Nikitina EV, Tsivileva MO, Pankratov NA, Bychkov AN (2007) Lentinula edodes biotechnology- from lentinan to lectins. Food technol biotechnol 45:230–237Google Scholar
  95. Nitha D, Meera CR, Janardhanan KK (2007) Anti-inflammatory and antitumour activities of cultured mycelium of morel mushroom, Morchella esculenta. Curr Sci 92:235–239Google Scholar
  96. Nitha B, Fijesh PV, Janardhanan KK (2013) Hepatoprotective activity of cultured mycelium of Morel mushroom, Morchella esculenta. Exp Toxicol Pathol 65(1–2):105–112PubMedCrossRefGoogle Scholar
  97. Ochoa-Zarzosa A, Vázquez-Garcidueñas MS, Robinson-Fuentes VA, Vázquez-Marrufo G (2011) Antibacterial and cytotoxic activity from basidiocarp extracts of the edible mushroom Lactarius indigo (Schw.) Fr. (Russulaceae). Afr J Pharm Pharmacol 5(2):281–288CrossRefGoogle Scholar
  98. Ooi VEC (1996) Hepatoprotective effect of some edible mushrooms. Phytother Res 10:536–538CrossRefGoogle Scholar
  99. Ooi CEV, Liu F (2000) Immunomodulation and anticancer activity of polysaccharide-protein complexes. Curr Med Chem 7:715–719PubMedCrossRefPubMedCentralGoogle Scholar
  100. Owaid MN, Al-Saeedi SSS, Al-Assaffii IAA (2017) Antifungal activity of cultivated oyster mushrooms on various agro-wastes. Summa Phytopathol 43(1):9–13CrossRefGoogle Scholar
  101. Oyetayo VO, Ariyo OO (2013) Antimicrobial and antioxidant properties of Pleurotus ostreatus (Jacq: Fries) cultivated on different tropical woody substrates. J waste conversion, Bioprod Biotechnol 1(2):28–32Google Scholar
  102. Ozturk M, Duru ME, Kivrak S, Dogan NM, Turkoglu A, Ozler MA (2011) In vitro Antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: a comparative study on the three most edible mushrooms. Food Chem Toxicol 49:1353–1360PubMedCrossRefPubMedCentralGoogle Scholar
  103. Papatheodoridis GV, Dimou E, Papadimitropoulos V (2002) Nucleoside analogues for chronic hepatitis B: antiviral efficacy and viral resistance. Am J Gastroenterol 97:1618–1628PubMedCrossRefPubMedCentralGoogle Scholar
  104. Parola S, Chiodaroli L, Orlandi V, Vannini C, Panno L (2017) Lentinula edodes and Pleurotus ostreatus: functional food with antioxidant -antimicrobial activity and an important source of Vitamin D and medicinal compounds. FFHD 7(6):773–794CrossRefGoogle Scholar
  105. Patel Y, Naraian R, Singh VK (2012) Medicinal properties of Pleurotus species (Oyster Mushroom): a review. World J Fungal Plant Biol 3(1):1–12Google Scholar
  106. Pauliuc I, Dorica B (2013) Antibacterial activity of Pleurotus ostreatus gemmotherapic extract. J Hortic Forestry Biotechnol 17(1):242–245Google Scholar
  107. Petrović J, Papandreou M, Glamočlija J, Ćirić A, Baskakis C, Proestos C, Lamari F, Zoumpoulakis P, Sokovic M (2014a) Different extraction methodologies and their influence on the bioactivity of the wild edible mushroom Laetiporus sulphureus (Bull.) Murrill. Food Funct 5:2948–2960PubMedCrossRefGoogle Scholar
  108. Petrović J, Stojković D, Reis FS, Barros L, Glamočlija J, Ćirić A, Ferreira I, Sokovic M (2014b) Study on chemical, bioactive and food preserving properties of Laetiporus sulphureus (Bull.: Fr.) Murr. Food Funct 5:1441–1451PubMedCrossRefGoogle Scholar
  109. Petrović J, Ćirić A, Heleno SA, Barros L, Ferreira ICFR, Glamočlija J, Soković M (2016) Pleurotus ostreatus (Jacq.ex Fr.) P. K.: a highly nutritious edible mushroom cultivated in Serbia as a potential remedy for chronic infectious diseases. Proceedings of the 13th congress of nutrition, food and nutrition – a roadmap to better health; 2016 October 26–28; BelgradeGoogle Scholar
  110. Poli G (1993) Liver damage due to free radicals. Br Med Bull 49:604–600PubMedCrossRefGoogle Scholar
  111. Quang DN, Hashimoto T, Asakawa Y (2006) Inedible mushrooms: a good source of biologically active substances. Chem Rec 6:79–99PubMedCrossRefGoogle Scholar
  112. Rajewska J, Bałasińska B (2004) Biologically active compounds of edible mushrooms and their beneficial impact on health. Postepy Hig Med Dosw 58:352–357Google Scholar
  113. Ramesh CH, Pattar MG (2010) Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of Western Ghats of Karnataka, India. Pharmacognosy Res 2(2):107–112PubMedPubMedCentralCrossRefGoogle Scholar
  114. Rana T, Bera AK, Das S, Bhattacharya D, Pan D, Bandyopadhyay S, Mondal DK, Samanta S, Bandyopadhyay S, Das SK (2012) Pleurotus florida lectin normalizes duration dependent hepatic oxidative stress responses caused by arsenic in rat. Exp Toxicol Pathol 64(7–8):665–671PubMedCrossRefGoogle Scholar
  115. Rao JR, Smyth TJ, Millar BC, Moore JE (2009) Antimicrobial properties of shiitake mushrooms (Lentinula edodes). Int J Antimicrob Agents 3:591–592CrossRefGoogle Scholar
  116. Reis FS, Martins A, Barros L, Ferreira ICFR (2012) Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: a comparative study between in vivo and in vitro samples. Food Chem Toxicol 50:1201–1207PubMedCrossRefGoogle Scholar
  117. Reis FS, Martins A, Vasconcelos MH, Morales P, Ferreira ICFR (2017) Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci Technol 66:48–62CrossRefGoogle Scholar
  118. Rincão VP, Yamamoto KA, Ricardo NMPS, Soares SA, Meirelles LDP, Nozawa C, Linhares RE (2012) Polysaccharide and extracts from Lentinula edodes: structural features and antiviral activity. Virol J 9:37PubMedPubMedCentralCrossRefGoogle Scholar
  119. Robaszkiewicz A, Bartosz G, Lawrynowicz M, Soszynski M (2010) The role of polyphenols, β-carotene, and lycopene in the antioxidative action of the extracts of dried, edible mushrooms. J Nutr Metab 42:1–9CrossRefGoogle Scholar
  120. Rosmiza M, Davies W, Aznie RC, Jabil M, Mazdi M (2016) Prospects for increasing commercial mushroom production in malaysia: challenges and opportunities. Mediterr J Soc Sci 7:406–415Google Scholar
  121. Roy DN, Azad AK, Sultana F, Anisuzzaman ASM (2016) In-vitro antimicrobial activity of ethyl acetate extract of two common edible mushrooms. J Pharmacol 5(2):79–82Google Scholar
  122. Roupas P, Keogh J, Noakes M, Margetts C, Taylor P (2012) The role of edible mushrooms in health: evaluation of the evidence. J Funct Foods 4(4):687–689CrossRefGoogle Scholar
  123. Sánchez C (2017a) Bioactives from mushroom and their application. In: Puri M (ed) Food Bioactives. Springer International Publishing, Cham, pp 23–27CrossRefGoogle Scholar
  124. Sánchez C (2017b) Reactive oxygen species and antioxidant properties from mushrooms. Synth Syst Biotechnol 2(1):13–22PubMedCrossRefGoogle Scholar
  125. Schwan WR (2012) Mushrooms: an untapped reservoir for nutraceutical antibacterial applications and antibacterial compounds. Curr Top Nutraceutical Res 10(1):75–82Google Scholar
  126. Seeff LB, Lindsay KL, Bacon BR, Kresina TF, Hoofnagle JH (2001) Complementary and alternative medicine in chronic liver disease. Hepatology 34(3):595–603PubMedCrossRefGoogle Scholar
  127. Seif HAS (2016) Physiological changes due to hepatotoxicity and the protective role of some medicinal plants. Beni–Suef Univ J Basic Appl Sci 5:134–136CrossRefGoogle Scholar
  128. Sharma MV, Sagar A, Joshi M (2015) Study on antibacterial activity of Agaricus bisporus (Lang.) Imbach. Int J Curr Microbiol App Sci 4(2):553–558Google Scholar
  129. Sherry D, McCulloch A, Liang Q, Reimann S, Newman PA (2018) Current sources of carbon tetrachloride (CCl4) in our atmosphere. Environ Res Lett 13:024004CrossRefGoogle Scholar
  130. Smolskaite L, Petras RV, Thierry T (2015) Comprehensive evaluation of antioxidant and antimicrobial properties of different mushroom species. LWT-Food Sci Technol 60:462–471CrossRefGoogle Scholar
  131. Soares AA, de Sá-Nakanishi AB, Bracht A, da Costa SMG, Koehnlein EA, de Cristina Giatti Souza M, Peralta RM (2013a) Hepatoprotective effects of mushrooms. Molecules 18:7609–7630PubMedPubMedCentralCrossRefGoogle Scholar
  132. Soares AA, de Oliveira AL, de Sá-Nakanishi AB, Comar JF, Rampazzo APS, Vicentini FA, Natali MRM, Costa SM, Bracht A, Peralta RM (2013b) Effects of an Agaricus blazei aqueous extract pretreatment on paracetamol-induced brain and liver injury in rats. Biomed Res Int 469180Google Scholar
  133. Soković M, Glamočlija J, Ćirić A (2013) Natural products from plants and fungi as fungicides. In: Nita M (ed) Fungicides-showcases of integrated plant disease management from around the world. InTech, New York, pp 185–232Google Scholar
  134. Soković M, Ćirić A, Glamočlija J, Nikolić M, van Griensven LJLD (2014) Agaricus Blazei hot water extract shows anti quorum sensing activity in the nosocomial human pathogen Pseudomonas aeruginosa. Molecules 19(4):4189–4199PubMedPubMedCentralCrossRefGoogle Scholar
  135. Soković M, Ćirić A, Glamočlija J, Stojković D (2017) The bioactive properties of mushrooms. In: Ferreira ICFR, Morales P, Barros L (eds) Wild plants, mushrooms and nuts: functional food properties and applications. Wiley-Blackwell, ChichesterGoogle Scholar
  136. Soković M, Glamočlija J, Ćirić A, Petrović J, Stojković D (2018) Mushrooms as sources of therapeutic foods. In: Holban AM, Grumezescu AM (eds) Therapeutic foods, handbook of food bioengineering. Elsevier Inc, LondonCrossRefGoogle Scholar
  137. Spratt DA, Daglia M, Papetti A, Stauder M, O’Donnell D, Ciric L, Tymon A, Repetto B, Signoretto C, Houri-Haddad Y, Feldman M, Steinberg D, Lawton S, Longstrom P, Pratten J, Zaura E, Gazzani G, Pruzzo C, Wilson M (2012) Evaluation of plant and fungal extracts for their potential antigingivitis and anticaries activity. J Biomed Biotechnol:510198Google Scholar
  138. Stajić M, Vukojević J, Knežević A, Duletić Laušević S, Milovanović I (2013) Antioxidant protective effect of mushroom metabolites. Curr Top Med Chem 13:2660–2676CrossRefGoogle Scholar
  139. Stojković D, Reis FS, Barros L, Glamočlija J, Ćirić A, van Griensven LJ et al (2013) Nutrients and non-nutrients composition and bioactivity of wild and cultivated Coprinus comatus (O.F. Müll.) Pers. Food Chem Toxicol 59:289–296PubMedCrossRefGoogle Scholar
  140. Stojković D, Reis FS, Glamočlija J, Ćirić A, Barros L, JLD van Griensven L et al (2014) Cultivated strains of Agaricus bisporus and A. brasiliensis: chemical characterization and evaluation of antioxidant and antimicrobial properties for final healthy product - natural preservatives in yoghurt. Food Funct 5:1602–1612PubMedCrossRefPubMedCentralGoogle Scholar
  141. Stojković DS, Kovačević-Grujičić N, Reis FS, Davidović S, Barros L, Popović J, Petrovic I, Pavic A, Ciric A, Stevanovic M (2017) Chemical composition of the mushroom Meripilus giganteus Karst. and bioactive properties of its methanolic extract. LWT-Food Sci Technol 79:454–462CrossRefGoogle Scholar
  142. Suay I, Arenal F, Asensio FJ, Basilio A, Cabello MA, Diey MT, Garcia JB, Del Val AG, Gorrochategui J, Hernandez P, Pelaez F, Vicente MF (2000) Screening of basidiomycetes for antimicrobial activities. Antonie van Leeuwenhoek 78:129–139PubMedCrossRefGoogle Scholar
  143. Sudhakar T, Nanda A, Babu SG, Janani S, Evans MD, Markose TK (2014) Synthesis of silver nanoparticles from edible mushroom and its antimicrobial activity against human pathogens. Int J Pharmtech Res 6(5):1718–1723Google Scholar
  144. Tehrani MHH, Fakhrehoseini E, Nejad MK, Mehregan H, Hakemi-Vala M (2012) Search for proteins in the liquid extract of edible mushroom, Agaricus bisporus, and studying their antibacterial effects. Iran J Pharm Res 1(1):145–150Google Scholar
  145. Tel G, Ozturk M, Duru ME, Turkoglu A (2015) Antioxidant and anticholinesterase activities of five wild mushroom species with total bioactive contents. Pharm Biol 53:824–830PubMedCrossRefGoogle Scholar
  146. Toshiro W, Ayako K, Satoshi I, Kumar MT, Shiro N, Keisuke T (2003) Antihypertensive effect of gamma-aminobutyric acid-enriched Agaricus blazei on mild hypertensive human subjects. J Jpn Soc Food Sci Technol 50:167–173CrossRefGoogle Scholar
  147. Turkoglu A, Kivrak I, Mercan N, Duru ME, Gezer K, Turkoglu H (2006) Antioxidant and antimicrobial activities of Morchella conica Pers. Afr J Biotechnol 5(11):1146–1150Google Scholar
  148. Uddin GM, Hossain S, Monirul Islam M, Asaduzzaman M, Bulbul J, Amin R (2015) Evaluation of antimicrobial, antioxidant and cytotoxic property of Pleurotus ostreatus mushroom. Int Res J Biol Sci 4(1):29–33Google Scholar
  149. Ul-Haq M, Rathod V, Singh D, Singh AK, Ninganagouda S, Hiremath J (2015) Dried Mushroom Agaricus bisporus mediated synthesis of silver nanoparticles from Bandipora District (Jammu and Kashmir) and their efficacy against Methicillin Resistant Staphylococcus aureus (MRSA). Nanosci Nanotechnol Int J 5(1):1–8Google Scholar
  150. Valverde ME, Hernandez-Perez T, Paredes-Lopez O (2015) Edible mushrooms: improving human health and promoting quality life. Int J Microbiol:376387Google Scholar
  151. Vamanu E (2012) Determination of antioxidant and antimicrobial properties of Agaricus bisporus from Romanian markets. Ovidius University Annals of Chemistry, Constanta, pp 47–52Google Scholar
  152. Van Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJM (2011) Acquired antibiotic resistance genes: an overview. Front Microbiol 28:203Google Scholar
  153. Venturini ME, Rivere CS, Gonsalez C, Blanco D (2008) Antimicrobial activity of extracts of edible wild and cultivated mushrooms against foodborne bacterial strains. J Food Prot 71(8):1701–1706PubMedCrossRefGoogle Scholar
  154. Vieira V, Fernandes A, Barros L, Glamočlija J, Ćirić A, Stojković D, Martins A, Soković M, Ferreira ICFR (2015) Wild Morchella conica Pers. from different origins: a comparative study of nutritional and bioactive properties. J Sci Food Agr 96:90–98CrossRefGoogle Scholar
  155. Waithaka PN, Gathuru EM, Githaiga BM, Onkoba KM (2017) Antimicrobial activity of mushroom (Agaricus bisporus) and fungal (Trametes gibbosa) extracts from mushrooms and fungi of Egerton Main Campus. J Biomed Sci Eng 6:3Google Scholar
  156. Wang HJ, Zakhari S, Jung MK (2010) Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J Gastroenterol 16(11):1304–1313PubMedPubMedCentralCrossRefGoogle Scholar
  157. Wang H, Fu Z, Han C (2013) The medicinal values of culinary-medicinal royal sun mushroom (Agaricus blazei Murrill). Evid Based Complement Alternat Med:842619Google Scholar
  158. Wasser SP (2014) Medicinal mushroom science: current perspectives, advances, evidences, and challenges. Biomed J 37:345–346PubMedCrossRefPubMedCentralGoogle Scholar
  159. Wasser SP, Weis AL (1999) Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol 19:65–66PubMedGoogle Scholar
  160. Wilson JW, Schurr MJ, LeBlanc CL, Ramamurthy R, Buchanan KL, Nickerson CA (2002) Mechanisms of bacterial pathogenicity. Postgrad Med J 78:216–224PubMedPubMedCentralCrossRefGoogle Scholar
  161. Wolff ERS, Wisbeck E, Silveira MLL, Gern RMM, Pinho MSL, Furlan SA (2008) Antimicrobial and antineoplasic activity of Pleurotus ostreatus. Appl Biochem Biotechnol 151:402–412PubMedCrossRefGoogle Scholar
  162. Wu MF, Hsu YM, Tang MC, Chen HC, Chung JG, Lu HF, Lin JP, Tang NY, Yeh C, Yeh MY (2011) Agaricus blazei Murill extract abrogates CCl14-induced liver injury in rats. In Vivo 225(1):35–40Google Scholar
  163. Xu G, Huang X, Qiu L, Wu J, Hu Y (2007) Mechanism study of chitosan on lipid metabolism in hyperlipidemic rats. Asia Pac J Clin Nutr 16(1):313–317PubMedGoogle Scholar
  164. Yoon KN, Alam N, Lee JS, Cho HJ, Kim HY, Shim MJ, Lee MW, Lee TS (2011) Antihyperlipidemic effect of dietary Lentinus edodes on plasma, feces and hepatic tissues in hypercholesterolemic rats. Mycobiology 39:96–102PubMedPubMedCentralCrossRefGoogle Scholar
  165. Yu J, Cui PJ, Zeng WL, Xie XL, Liang WJ, Lin GB, Zeng L (2009) Protective effect of selenium-polysaccharides from the mycelia of Coprinus comatus on alloxan-induced oxidative stress in mice. Food Chem 117:42–47CrossRefGoogle Scholar
  166. Zhang A, Sun H, Wang X (2013) Recent advances in natural products from plants for treatment of liver diseases. Eur J Med Chem 63:570–577PubMedCrossRefPubMedCentralGoogle Scholar
  167. Zhao H, Lan Y, Liu H, Zhu Y, Liu W, Zhang J, et al. (2017) Aantioxidant and hepatoprotective activities of polysaccharides from spent mushroom substrates (Laetiporus sulphureus) in acute alcohol-induced mice. Oxi Med Cell Longev 5863523, 12Google Scholar
  168. Zhu P (2009) The present status and prospects of medicinal fungal research and development in China. In: Proceeding of the 5th international medicinal mushroom conference, Nantong, ChinaGoogle Scholar
  169. Zhu HJ, Sheng K, Yan EF, Qiao JJ, Lv F (2012) Extraction, purification and antibacterial activities of a polysaccharide from spent mushroom substrate. Int J Biol Macromol 5(3):840–843CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jasmina Glamočlija
    • 1
  • Marina Kostić
    • 1
  • Marina Soković
    • 1
    Email author
  1. 1.Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”University of BelgradeBelgradeSerbia

Personalised recommendations