Bioconversion and Biotransformation Efficiencies of Wild Macrofungi

  • Aparecido Almeida Conceição
  • Joice Raisa Barbosa Cunha
  • Vandinelma Oliveira Vieira
  • Rubén Darío Romero Pelaéz
  • Simone Mendonça
  • João Ricardo Moreira Almeida
  • Eustáquio Souza Dias
  • Euziclei Gonzaga de Almeida
  • Félix Gonçalves de SiqueiraEmail author
Part of the Fungal Biology book series (FUNGBIO)


With the capacity to produce different enzymes, macrofungi are able to efficiently degrade a wide rage of substances, so that, they are used as biodetoxification and bioremediation agents. For the ability to adapt in most variable and extreme conditions, different biomasses can be used as substrate for growth of macrofungi and obtention of by-products with great interest for industry. In this chapter, it will be further explored the efficiency and importance of wild mushroom as bioconversion and biotransformation agents of vegetal biomass, and the importance of these fungi as decomposers agent in the soil and finally explore the tools (omics) to understand the mechanism of the process. Macrofungi are vital agents for the maintenance of life on earth, meanly because of their capacity to biodegrade organic matter, such as all the components of wood. Purified enzymes from a macrofungus can be used for the production of new, valuable by-products from a specific substrate in a process called biotransformation. The fungi need to obtain energy from a nutrient source to create a new product. Complex substrates generally need to be degraded to produce sugars. This process is called biodegradation, which is applied to the disintegration of any matter by biological means. Biodegradation occurs through the action of specialized enzymes; some of these enzymes, called promiscuous enzymes, are able to degrade several analogous substrates. Through the action of these enzymes, the fungi are able to degrade/remove some toxic/xenobiotic substances by a process called biodetoxification. When the elimination of the xenobiotic compounds occurs in contaminated media, including water, soil and subsurface material, the fungus/microorganism performs a bioremediation or mycobioremediation. When the macrofungi are able to degrade complex organic matter into mineral samples, this process is called mineralization.


  1. Albert S, Chauhan D, Pandya B, Padhiar A (2011) Screening of Trichoderma Spp. As potential fungal partner in co-culturing with white rot fungi for efficient bio pulping. Glob J Biotechnol Biochem 6(3):95–101Google Scholar
  2. Alofe SOB, Onawunmi FV, Ogundaini AO, Tiwalade TA (2005) Mycelial growth and antibacterial metabolite production by wild mushrooms. group, vol 8, pp 157–162Google Scholar
  3. Asemoloye MD, Ahmad R, Jonathan SG (2017) Synergistic action of rhizospheric fungi with Megathyrsus maximus root speeds up hydrocarbon degradation kinetics in oil polluted soil. Chemosphere 187:1–10. PubMedCrossRefGoogle Scholar
  4. Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19(6):771–783. PubMedCrossRefGoogle Scholar
  5. Atalla MM, Zeinab HK, Eman RH, Amani AY, Abeer AAEA (2013) Characterization and kinetic properties of the purified Trematos phaeria mangrovei laccase enzyme. Saudi J Biol Sci 20(4):373–381. PubMedPubMedCentralCrossRefGoogle Scholar
  6. Aydin S, Karaçay HA, Shahi A, Gökçe S, Ince B, Ince O (2017) Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biol Rev 31(2):61–72. CrossRefGoogle Scholar
  7. Balaes T, Petre CV, Ungureanu C, Mardari C, Tănase C (2017) Ligninolytic enzyme system in ecological adaptation of lignicolous macrofungi. Appl Ecol Environ Res 15(1):207–224. CrossRefGoogle Scholar
  8. Baldrian P, Valášková V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32(3):501–521. PubMedCrossRefGoogle Scholar
  9. Bash E, Ceci A, Pierro L, Riccardi C, Pinzari F, Maggi O et al (1999) Biodegradation of Hexachlorocyclohexane (HCH) Isomers by White Rot Fungus, Pleurotus florida. J Bioremed Biodegr 32(4):117–126. CrossRefGoogle Scholar
  10. Bertrand S, Schumpp O, Bohni N, Bujard A, Azzollini A, Monod M, Wolfender JL (2013) Detection of metabolite induction in fungal co-cultures on solid media by high-throughput differential ultra-high pressure liquid chromatography-time-of-flight mass spectrometry fingerprinting. J Chromatogr A 1292:219–228. PubMedCrossRefGoogle Scholar
  11. Bezalel L, Hadar Y, Fu PP, Freeman JP, Cerniglia CE (1996) Initial oxidation products in the metabolism of pyrene, anthracene, fluorene, and dibenzothiophene by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62(7):2554–2559PubMedPubMedCentralGoogle Scholar
  12. Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: The functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321(1–2):213–233. CrossRefGoogle Scholar
  13. Boyle CD, Kropp BR, Reid ID (1992) Solubilization and mineralization of lignin by white rot fungi. Appl Environ Microbiol 58(10):3217–3224PubMedPubMedCentralGoogle Scholar
  14. Chan-Cupul W, Heredia-Abarca G, Rodríguez-Vázquez R (2016) Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions. J Environ Sci Health, Part B Pesticides, Food Contaminants, and Agricultural Wastes 51(5):298–308. CrossRefGoogle Scholar
  15. Chen S, Chiu M (2005) Evaluation of white-rot fungi for treatment of organic wastes without enviromental impact. In: The 2005 world sustainable building conference, Tokyo, pp 27–29Google Scholar
  16. Chiu SW, Ching ML, Fong KL, Moore D (1998) Spent oyster mushroom substrate performs better than many mushroom mycelia in removing the biocide pentachlorophenol. Mycol Res 102(12):1553–1562. CrossRefGoogle Scholar
  17. Coleman ML, Raiswell R (2015) Microbial mineralization of organic matter: mechanisms of self-organization and inferred rates of precipitation of diagenetic minerals, vol 344. The Royal Society, pp 69–87Google Scholar
  18. Collins AM, Kennedy MJ (1999) Biotransformations and bioconversions in New Zealand: Past endeavours and future potential. Australas Biotechnol 9(2):86–94Google Scholar
  19. Cosgrove DJ, Jarvis MC (2012) Comparative structure and biomechanics of plant primary and secondary cell walls. Front Plant Sci 3:1–6. CrossRefGoogle Scholar
  20. Dam NMV, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends Plant Sci 21(3):256–265. PubMedCrossRefGoogle Scholar
  21. Damián-Robles RM, Castro-Montoya AJ, Saucedo-Luna J, Vázquez-Garcidueñas MS, Arredondo-Santoyo M, Vázquez-Marrufo G (2017) Characterization of ligninolytic enzyme production in white-rot wild fungal strains suitable for kraft pulp bleaching. 3 Biotech 7(5):319. PubMedPubMedCentralCrossRefGoogle Scholar
  22. de Souza WR (2013) Microbial degradation of lignocellulosic biomass. In: Chandel DA (ed) Sustainable degradation of lignocellulosic biomass – techniques, applications and commercialization, pp 135–152. InTech. CrossRefGoogle Scholar
  23. Díaz-Godínez G, Cervantes-Muñoz P, Acosta-Urdapilleta M, Villegas E, Gupta V, Téllez-Téllez M (2016) Enzymatic activity of three wild mushrooms. Mycosphere 7:1568–1575. CrossRefGoogle Scholar
  24. Donoso C, Becerra J, Martínez M, Garrido N, Silva M (2008) Degradative ability of 2,4,6-tribromophenol by saprophytic fungi Trametes versicolor and Agaricus augustus isolated from chilean forestry. World J Microbiol Biotechnol 24(7):961–968. CrossRefGoogle Scholar
  25. Falade OE, Oyetayo VO, Awala SI (2017) Evaluation of the mycochemical composition and antimicrobial potency of wild macrofungus, Rigidoporus microporus (Sw). J Phytopharmacol 6(2):115–125Google Scholar
  26. Fonseca MI, Zapata PD, Villalba LL, Fariña JI (2015) Caracterización del potencial enzimático oxidativo de cepas nativas de hongos de pudrición blanca de la selva subtropical de Misiones (Argentina). Acta Biológica Colombiana 20(1):47–56. CrossRefGoogle Scholar
  27. Fragoeiro S, Magan N (2008) Impact of Trametes versicolor and Phanerochaete chrysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity. Int Biodeterior Biodegrad 62(4):376–383. CrossRefGoogle Scholar
  28. Günç Ergönül P, Akata I, Kalyoncu F, Ergönül B (2013) Fatty acid compositions of six wild edible mushroom species. Sci World J 2013:163964–163964. CrossRefGoogle Scholar
  29. Hasin Y, Seldin M, Lusis A (2017) Multi-omics approaches to disease. Genome Biol 18(1):1–15. CrossRefGoogle Scholar
  30. Hofrichter M (2002) Review: Lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30(4):454–466. CrossRefGoogle Scholar
  31. Huang Q, Jia Y, Wan Y, Li H, Jiang R (2015) Market survey and risk assessment for trace metals in edible fungi and the substrate role in accumulation of heavy metals. J Food Sci 80(7):H1612–H1618. PubMedCrossRefGoogle Scholar
  32. Ichinose H (2013) Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. Biotechnol Appl Biochem 60(1):71–81. PubMedCrossRefGoogle Scholar
  33. Jain R, Garg V, Yadav D (2014) In vitro comparative analysis of monocrotophos degrading potential of Aspergillus flavus, Fusarium pallidoroseum and Macrophomina sp. Biodegradation 25(3):437–446. PubMedCrossRefGoogle Scholar
  34. Jaszek M, Osińska-Jaroszuk M, Janusz G, Matuszewska A, Stefaniuk D, Sulej J, Jarosz-Wilkołazka A (2013) New bioactive fungal molecules with high antioxidant and antimicrobial capacity isolated from Cerrena unicolor idiophasic cultures. Biomed Res Int 2013:1–11. CrossRefGoogle Scholar
  35. Jia Z, Deng J, Chen N, Shi W, Tang X, Xu H (2017) Bioremediation of cadmium-dichlorophen co-contaminated soil by spent Lentinus edodes substrate and its effects on microbial activity and biochemical properties of soil. J Soils Sediments 17(2):315–325. CrossRefGoogle Scholar
  36. Kadimaliev DA, Revin VV, Atykyan NA, Nadezhina OS, Parshin AA (2011) The role of laccase and peroxidase of Lentinus (Panus) tigrinus fungus in biodegradation of high phenol concentrations in liquid medium. Appl Biochem Microbiol 47(1):66–71. CrossRefGoogle Scholar
  37. Kamei I, Hirota Y, Mori T, Hirai H, Meguro S, Kondo R (2012) Direct ethanol production from cellulosic materials by the hypersaline-tolerant white-rot fungus Phlebia sp. MG-60. Bioresour Technol 112:137–142. PubMedCrossRefGoogle Scholar
  38. Kantharaj P, Boobalan B, Sooriamuthu S, Mani R (2017) Lignocellulose degrading enzymes from fungi and their industrial applications. Int J Curr Res Rev 9(21):1–13. CrossRefGoogle Scholar
  39. Khaund P, Joshi SR (2014a) Enzymatic profiling of wild edible mushrooms consumed by the ethnic tribes of India. J Korean Soc Appl Biol Chem 550(1):123–130. CrossRefGoogle Scholar
  40. Khaund P, Joshi SR (2014b) Enzymatic profiling of wild edible mushrooms consumed by the ethnic tribes of India. J Korean Soc Appl Biol Chem 57(2):263–271. CrossRefGoogle Scholar
  41. Kim J-H, Kim YS (2001) Characterization of a metalloenzyme from a wild mushroom, Tricholoma saponaceum. Biosci Biotechnol Biochem 65(2):356–362PubMedCrossRefGoogle Scholar
  42. Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, Petrović P et al (2015) Antioxidants of edible mushrooms. Molecules 20(10):19489–19525. CrossRefGoogle Scholar
  43. Li H, Wu S, Ma X, Chen W, Zhang J, Duan S et al (2018) The genome sequences of 90 mushrooms. Sci Rep 8(1):9982. PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lin X, Li X, Sun T, Li P, Zhou Q, Sun L, Hu X (2009) Changes in microbial populations and enzyme activities during the bioremediation of oil-contaminated soil. Bull Environ Contam Toxicol 83(4):542–547. PubMedCrossRefGoogle Scholar
  45. Magan N, Fragoeiro S, Bastos C (2010) Environmental factors and bioremediation of xenobiotics using white rot fungi. Mycobiology 38(4):238–248. PubMedPubMedCentralCrossRefGoogle Scholar
  46. Margot J, Maillard J, Rossi L, Barry DA, Holliger C (2013) Influence of treatment conditions on the oxidation of micropollutants by Trametes versicolor laccase. New Biotechnol 30(6):803–813. CrossRefGoogle Scholar
  47. Martirani L, Giardina P, Marzullo L, Sannia G (1996) Reduction of phenol content and toxicity in olive oil mill waste waters with the ligninolytic fungus Pleurotus ostreatus. Water Res 30(8):1914–1918. CrossRefGoogle Scholar
  48. Monrroy M, Ortega I, Ramírez M, Baeza J, Freer J (2011) Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis. Enzym Microb Technol 49(5):472–477. CrossRefGoogle Scholar
  49. Okerentugba PO, Orgi FA, Ibiene AA, Elemo GN (2015) Spent mushroom compost for bioremediation of petroleum hydrocarbon polluted soil : A review. Glob Adv Res J 4(1):1–7Google Scholar
  50. Pizzul L, Castillo M d P, Stenström J (2009) Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation 20(6):751–759. PubMedCrossRefGoogle Scholar
  51. Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33. PubMedPubMedCentralCrossRefGoogle Scholar
  52. Putra WP, Kamari A, Najiah S, Yusoff M, Ishak CF, Mohamed A et al (2014) Biosorption of Cu(II), Pb(II) and Zn(II) ions from aqueous solutions using selected waste materials: adsorption and characterisation studies. J Encapsulation and Adsorpt Sci 4(4):25–35. CrossRefGoogle Scholar
  53. Raymond P, Mshandete AM, Kajumulo Kivaisi A (2015) Production of oxidative and hydrolytic enzymes by Coprinus cinereus (Schaeff.) Gray from sisal wastes supplemented with cow dung manure. Biotechnol Res Int 2015:1–9. CrossRefGoogle Scholar
  54. Riley R, Salamov AA, Brown DW, Nagy LG, Floudas D, Held BW, Grigoriev IV (2014) Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc Natl Acad Sci 111(27):9923–9928. PubMedCrossRefGoogle Scholar
  55. Rossi A, Cruz AHS, Santos RS, Silva PM, Silva EM, Mendes NS, Martinez-Rossi NM (2013) Ambient pH sensing in filamentous fungi: Pitfalls in elucidating regulatory hierarchical signaling networks. IUBMB Life 65(11):930–935. PubMedCrossRefGoogle Scholar
  56. Sari M, Prange A, Lelley JI, Hambitzer R (2017) Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chem 216:45–51. PubMedCrossRefGoogle Scholar
  57. Schneider WDH, Fontana RC, Mendonça S, de Siqueira FG, Dillon AJP, Camassola M (2018) High level production of laccases and peroxidases from the newly isolated white-rot basidiomycete Marasmiellus palmivorus VE111 in a stirred-tank bioreactor in response to different carbon and nitrogen sources. Process Biochem 69:1–11. CrossRefGoogle Scholar
  58. Shah F, Nicolas C, Bentzer J, Ellstrom M, Smits M, Rineau F, Tunlid A (2017) Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol 209:1705–1719. CrossRefGoogle Scholar
  59. Silva RN (2016) Perspectives in genomics the future of fungi in ‘omics’ era. Curr Genomics 17(2):82–84PubMedPubMedCentralCrossRefGoogle Scholar
  60. Singh SS, Wang H, Chan YS, Pan W, Dan X, Yin CM et al (2015) Lectins from edible mushrooms. Molecules 20(1):446–469. CrossRefGoogle Scholar
  61. Strehmel N, Böttcher C, Schmidt S, Scheel D (2014) Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry 108:35–46. PubMedCrossRefGoogle Scholar
  62. Su Y, Yu X, Sun Y, Wang G, Chen H, Chen G (2018) Evaluation of screened lignin-degrading fungi for the biological pretreatment of corn stover. Sci Rep 8(1):1–11. CrossRefGoogle Scholar
  63. Teere M, Zvauya R, Read JS (2001) Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions. J Basic Microbiol 41(2):115–129.<115::AID-JOBM115>3.0.CO;2-S CrossRefGoogle Scholar
  64. Tian X, Fang Z, Guo F (2012) Impact and prospective of fungal pre-treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels Bioprod Biorefin 6:335–350. CrossRefGoogle Scholar
  65. Tortella GR, Diez MC, Durán N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31(4):197–212. PubMedCrossRefGoogle Scholar
  66. Tuhy Ł, Samoraj M, Michalak I, Chojnacka K (2014) The application of biosorption for production of micronutrient fertilizers based on waste biomass. Appl Biochem Biotechnol 174(4):1376–1392. PubMedPubMedCentralCrossRefGoogle Scholar
  67. Tuhy Ł, Samoraj M, Witkowska Z, Rusek P, Chojnacka K (2015) Conversion of spent mushroom substrate into micronutrient fertilizer via biosorption in a pilot plant. Ecol Eng 84:370–374. CrossRefGoogle Scholar
  68. Vasina DV, Moiseenko KV, Fedorova TV, Tyazhelova TV (2017) Lignin-degrading peroxidases in white-rot fungus Trametes hirsuta 072. Absolute expression quantification of full multigene family. PLoS One 12(3):1–16. CrossRefGoogle Scholar
  69. Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G (2014) Fungal laccases and their applications in bioremediation. Enzyme Research 2014:1–21. CrossRefGoogle Scholar
  70. Yadav JS, Loper JC (2000) Cytochrome P450 oxidoreductase gene and its differentially terminated cDNAs from the white rot fungus Phanerochaete chrysosporium. Curr Genet 37(1):65–73. PubMedCrossRefGoogle Scholar
  71. Yadav JS, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34:1165–1169. PubMedCrossRefGoogle Scholar
  72. Zengin G, Uren MC, Kocak MS, Gungor H, Locatelli M, Aktumsek A, Sarikurkcu C (2017) Antioxidant and enzyme inhibitory activities of extracts from wild mushroom species from Turkey. Int J Med Mush 19(4):327–336. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Aparecido Almeida Conceição
    • 1
    • 2
  • Joice Raisa Barbosa Cunha
    • 2
    • 3
  • Vandinelma Oliveira Vieira
    • 2
    • 4
  • Rubén Darío Romero Pelaéz
    • 2
    • 5
  • Simone Mendonça
    • 2
  • João Ricardo Moreira Almeida
    • 2
    • 5
  • Eustáquio Souza Dias
    • 3
  • Euziclei Gonzaga de Almeida
    • 4
  • Félix Gonçalves de Siqueira
    • 1
    • 2
    • 4
    Email author
  1. 1.Graduate Program of BiosciencesFederal University of BahiaVitória da ConquistaBrazil
  2. 2.Embrapa AgroenergyBrasíliaBrazil
  3. 3.Graduate Program Microbial AgriculturalFederal University of LavrasLavrasBrazil
  4. 4.Graduate Program of Biotechnology and BiodiversityFederal University of Mato GrossoCuiabáBrazil
  5. 5.Graduate Program Microbial BiologyUniversity of BrasiliaBrasíliaBrazil

Personalised recommendations