Skip to main content

Pericytes Derived from Human Pluripotent Stem Cells

  • Chapter
  • First Online:
Pericyte Biology - Novel Concepts

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1109))

Abstract

Pericytes wrap blood microvessels and are believed to play important roles in vascular morphogenesis, maturation, and stability. In addition, pericytes have emerged as candidates for targeting cancer growth and for wound healing. In order to model these processes and test new therapies, it is desirable to have a reliable, scalable source of pericytes. Human pluripotent stem cells (hPSCs), which possess the ability to differentiate into any cell type in the body, have been used to generate pericytes in vitro quickly, consistently, and with high yields. In this chapter, we consider the differentiation of pericytes from hPSCs. We compare the approaches taken by multiple groups and discuss characterization of hPSC-pericytes. Studying pericyte differentiation in vitro provides the opportunity to identify factors influencing pericyte development and to establish the ontogenic relationships between pericytes and similar cells. The development of highly specific, defined pericyte populations from hPSCs will enable downstream applications requiring large quantities of cells, including tissue engineered models and cell therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  2. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  3. Kim K et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290. https://doi.org/10.1038/nature09342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yamada M et al (2014) Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature 510:533–536. https://doi.org/10.1038/nature13287

    Article  CAS  PubMed  Google Scholar 

  5. Tachibana M et al (2013) Human embryonic stem cells derived by somatic cell nuclear transfer. Cell 153:1228–1238. https://doi.org/10.1016/j.cell.2013.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wolf DP et al (2017) Concise review: embryonic stem cells derived by somatic cell nuclear transfer: a horse in the race? Stem Cells 35:26–34. https://doi.org/10.1002/stem.2496

    Article  CAS  PubMed  Google Scholar 

  7. Ma H et al (2014) Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 511:177–183. https://doi.org/10.1038/nature13551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johannesson B et al (2014) Comparable frequencies of coding mutations and loss of imprinting in human pluripotent cells derived by nuclear transfer and defined factors. Cell Stem Cell 15:634–642. https://doi.org/10.1016/j.stem.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  9. Zhao M-T et al (2017) Molecular and functional resemblance of differentiated cells derived from isogenic human iPSCs and SCNT-derived ESCs. PNAS 114:E11111–E11120. https://doi.org/10.1073/pnas.1708991114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boroujerdi A, Tigges U, Welser-Alves JV, Milner R (2014) Cerebral angiogenesis methods in molecular biology. Humana Press, New York, pp 383–392

    Book  Google Scholar 

  11. Jamieson JJ, Searson PC, Gerecht S (2017) Engineering the human blood-brain barrier in vitro. J Biol Eng 11:37. https://doi.org/10.1186/s13036-017-0076-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aday S, Cecchelli R, Hallier-Vanuxeem D, Dehouck MP, Ferreira L (2016) Stem cell-based human blood–brain barrier models for drug discovery and delivery. Trends Biotechnol 34:382–393. https://doi.org/10.1016/j.tibtech.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  13. Vatine GD et al (2017) Modeling psychomotor retardation using iPSCs from MCT8-deficient patients indicates a prominent role for the blood-brain barrier. Cell Stem Cell 20:831–843.e835. https://doi.org/10.1016/j.stem.2017.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lim RG et al (2017) Huntington’s disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits. Cell Rep 19:1365–1377. https://doi.org/10.1016/j.celrep.2017.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Juopperi TA et al (2012) Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain 5:17. https://doi.org/10.1186/1756-6606-5-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shen EM, McCloskey KE (2017) Development of mural cells: from in vivo understanding to in vitro recapitulation. Stem Cells Dev 26:1020–1041. https://doi.org/10.1089/scd.2017.0020

    Article  PubMed  Google Scholar 

  17. Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215. https://doi.org/10.1016/j.devcel.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  18. Sinha S, Santoro MM (2018) New models to study vascular mural cell embryonic origin: implications in vascular diseases. Cardiovasc Res 114(4):481–491. https://doi.org/10.1093/cvr/cvy005

    Article  CAS  PubMed  Google Scholar 

  19. Amos PJ et al (2008) IFATS collection: the role of human adipose-derived stromal cells in inflammatory microvascular remodeling and evidence of a perivascular phenotype. Stem Cells 26:2682–2690. https://doi.org/10.1634/stemcells.2008-0030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klein D et al (2011) Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One 6:1–14. https://doi.org/10.1371/journal.pone.0020540

    Article  CAS  Google Scholar 

  21. Vidal M et al (2015) Adult DRG Stem/Progenitor Cells Generate Pericytes in the Presence of Central Nervous System (CNS) Developmental Cues, and Schwann Cells in Response to CNS Demyelination. Stem Cells 33:2011–2024. https://doi.org/10.1002/stem.1997

    Article  CAS  PubMed  Google Scholar 

  22. Dar A et al (2012) Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb clinical perspective. Circulation 125:87–99. https://doi.org/10.1161/CIRCULATIONAHA.111.048264

    Article  PubMed  Google Scholar 

  23. Kusuma S et al (2013) Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. PNAS 110:12601–12606. https://doi.org/10.1073/pnas.1306562110

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wanjare M, Kusuma S, Gerecht S (2014) Defining differences among perivascular cells derived from human pluripotent stem cells. Stem Cell Rep 2:561–575. https://doi.org/10.1016/j.stemcr.2014.03.004

    Article  CAS  Google Scholar 

  25. Orlova VV et al (2014) Functionality of endothelial cells and pericytes from human pluripotent stem cells demonstrated in cultured vascular plexus and zebrafish xenografts significance. Arterioscler Thromb Vasc Biol 34:177–186. https://doi.org/10.1161/ATVBAHA.113.302598

    Article  CAS  PubMed  Google Scholar 

  26. Greenwood-Goodwin M, Yang J, Hassanipour M, Larocca D (2016) A novel lineage restricted, pericyte-like cell line isolated from human embryonic stem cells. Sci Rep 6:srep24403. https://doi.org/10.1038/srep24403

    Article  CAS  Google Scholar 

  27. Kumar A et al (2017) Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep 19:1902–1916. https://doi.org/10.1016/j.celrep.2017.05.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Griffin C, Bajpai R (2017) Neural Crest-Derived Human Cranial Pericytes Model Primary Forebrain Pericytes and Predict Disease-Specific Cranial Vasculature Defects. Available at SSRN: https://ssrn.com/abstract=3189103

  29. O’Rahilly R, Müller F (2010) Developmental stages in human embryos: revised and new measurements. CTO 192:73–84. https://doi.org/10.1159/000289817

    Article  PubMed  Google Scholar 

  30. Tam PPL, Behringer RR (1997) Mouse gastrulation: the formation of a mammalian body plan. Mech Dev 68:3–25. https://doi.org/10.1016/S0925-4773(97)00123-8

    Article  CAS  PubMed  Google Scholar 

  31. Sinha S, Iyer D, Granata A (2014) Embryonic origins of human vascular smooth muscle cells: implications for in vitro modeling and clinical application. Cell Mol Life Sci 71:2271–2288. https://doi.org/10.1007/s00018-013-1554-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mummery CL et al (2012) Differentiation of human ES and iPS cells to cardiomyocytes: a methods overview. Circ Res 111:344–358. https://doi.org/10.1161/CIRCRESAHA.110.227512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Geevarghese A, Herman IM (2014) Pericyte-endothelial crosstalk: implications and opportunities for advanced cellular therapies. Transl Res 163:296–306. https://doi.org/10.1016/j.trsl.2014.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bergers G, Song S (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncol 7:452–464. https://doi.org/10.1215/S1152851705000232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3:229–230. https://doi.org/10.1016/j.stem.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  36. Crisan M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313. https://doi.org/10.1016/j.stem.2008.07.003

    Article  CAS  PubMed  Google Scholar 

  37. Paul G et al (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One 7:e35577. https://doi.org/10.1371/journal.pone.0035577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dar A et al (2012) Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125:87–99. https://doi.org/10.1161/CIRCULATIONAHA.111.048264

    Article  PubMed  Google Scholar 

  39. Guimaraes-Camboa N et al (2017) Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell 20:345–359 e345. https://doi.org/10.1016/j.stem.2016.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kusuma S et al (2013) Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc Natl Acad Sci U S A 110:12601–12606. https://doi.org/10.1073/pnas.1306562110

    Article  PubMed  PubMed Central  Google Scholar 

  41. Orlova VV et al (2014) Generation, expansion and functional analysis of endothelial cells and pericytes derived from human pluripotent stem cells. Nat Protoc 9:1514–1531. https://doi.org/10.1038/nprot.2014.102

    Article  CAS  PubMed  Google Scholar 

  42. Greenwood-Goodwin M, Yang J, Hassanipour M, Larocca D (2016) A novel lineage restricted, pericyte-like cell line isolated from human embryonic stem cells. Sci Rep 6:24403. https://doi.org/10.1038/srep24403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T (2016) What is a pericyte? J Cereb Blood Flow Metab 36:451–455. https://doi.org/10.1177/0271678X15610340

    Article  CAS  PubMed  Google Scholar 

  44. Hill RA et al (2015) Regional blood flow in the normal and ischemic brain is controlled by arteriolar smooth muscle cell contractility and not by capillary pericytes. Neuron 87:95–110. https://doi.org/10.1016/j.neuron.2015.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Birbrair A et al (2014) Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther 5:122. https://doi.org/10.1186/scrt512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dias Moura Prazeres PH et al (2017) Pericytes are heterogeneous in their origin within the same tissue. Dev Biol 427:6–11. https://doi.org/10.1016/j.ydbio.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  47. Dore-Duffy P (2008) Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des 14:1581–1593. https://doi.org/10.2174/138161208784705469

    Article  CAS  PubMed  Google Scholar 

  48. Wanjare M, Kuo F, Gerecht S (2013) Derivation and maturation of synthetic and contractile vascular smooth muscle cells from human pluripotent stem cells. Cardiovasc Res 97:321–330. https://doi.org/10.1093/cvr/cvs315

    Article  CAS  PubMed  Google Scholar 

  49. Bajpai VK, Mistriotis P, Loh Y-H, Daley GQ, Andreadis ST (2012) Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates. Cardiovasc Res 96:391–400. https://doi.org/10.1093/cvr/cvs253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Etchevers HC, Vincent C, Douarin NML, Couly GF (2001) The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128:1059–1068

    CAS  PubMed  Google Scholar 

  51. Korn J, Christ B, Kurz H (2002) Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. J Comp Neurol 442:78–88. https://doi.org/10.1002/cne.1423

    Article  PubMed  Google Scholar 

  52. Cheung C, Bernardo AS, Pedersen RA, Sinha S (2014) Directed differentiation of embryonic origin–specific vascular smooth muscle subtypes from human pluripotent stem cells. Nat Protocol 9:929–938. https://doi.org/10.1038/nprot.2014.059

    Article  CAS  Google Scholar 

  53. Cheung C, Bernardo AS, Trotter MWB, Pedersen RA, Sinha S (2012) Generation of human vascular smooth muscle subtypes provides insight into embryological origin–dependent disease susceptibility. Nat Biotech 30:165–173. https://doi.org/10.1038/nbt.2107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Gerecht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jamieson, J., Macklin, B., Gerecht, S. (2018). Pericytes Derived from Human Pluripotent Stem Cells. In: Birbrair, A. (eds) Pericyte Biology - Novel Concepts. Advances in Experimental Medicine and Biology, vol 1109. Springer, Cham. https://doi.org/10.1007/978-3-030-02601-1_9

Download citation

Publish with us

Policies and ethics