Pericytes in Veterinary Species: Prospective Isolation, Characterization and Tissue Regeneration Potential

  • Cristina L. EstevesEmail author
  • F. Xavier Donadeu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1109)


Although pericytes have long been known for their roles in blood vessel regulation, it was not until a decade ago that their tissue regeneration potential began to be considered, after studies showed that pericytes were the in vivo counterparts of mesenchymal stem/stromal cells (MSCs). The prospective isolation and culture expansion of pericytes brought great excitement as it opened the way to the therapeutic use of well-defined cell populations with known regenerative potential to overcome concerns associated with the use of traditional MSC preparations. Studies first in humans and later in the horse and other domestic species showed that indeed cultured pericytes had key characteristics of MSCs, namely, their immunophenotype and the abilities to grow clonally and to differentiate into mature mesenchymal cells both in vitro and vivo. Several studies with human pericytes, and to a much lesser extent with animal pericytes, have also shown significant promise in tissue repair in different disease models. This review summarizes current knowledge on the tissue regeneration properties of pericytes from domestic animals and outlines future steps necessary for realizing their full potential both in clinical veterinary medicine and in preclinical testing of human therapies using large animal models, including the need for robust approaches for isolation, culture and appropriate in vivo testing of the tissue regenerative properties of pericytes in these species.


Pericyte Veterinary Tissue repair Mesenchymal stem/stromal cells Adipose Regeneration CD146 Horse Dog Perivascular CD34 Adventitial MSC Bone marrow Pig 



We would like to acknowledge the Horserace Betting Levy Board (Prj768 awarded to FXD, and SPrj022 to CLE and FXD) and the Petplan Charitable Trust (2017-568-606 awarded to CLE and FXD) for funding. FXD received Institute Strategic Programme Grant funding from the Biotechnology and Biological Sciences Research Council. The authors declare no conflict of interest.


  1. 1.
    Alcayaga-Miranda F, Cuenca J, Khoury M (2017) Antimicrobial activity of mesenchymal stem cells: current status and new perspectives of antimicrobial peptide-based therapies. Front Immunol 8:339CrossRefGoogle Scholar
  2. 2.
    Alvino VV, Fernández-Jiménez R, Rodriguez-Arabaolaza I et al (2018) Transplantation of allogeneic pericytes improves myocardial vascularization and reduces interstitial fibrosis in a swine model of reperfused acute myocardial infarction. J Am Heart Assoc 7(2): e006727Google Scholar
  3. 3.
    Andreeva E, Bobyleva P, Gornostaeva A et al (2017) Interaction of multipotent mesenchymal stromal and immune cells: bidirectional effects. Cytotherapy 19:1152–1166CrossRefGoogle Scholar
  4. 4.
    Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215CrossRefGoogle Scholar
  5. 5.
    Barrachina L, Remacha AR, Romero A et al (2016) Effect of inflammatory environment on equine bone marrow derived mesenchymal stem cells immunogenicity and immunomodulatory properties. Vet Immunol Immunopathol 171:57–65CrossRefGoogle Scholar
  6. 6.
    Basini G, Falasconi I, Bussolati S et al (2014) Isolation of endothelial cells and pericytes from swine corpus luteum. Domest Anim Endocrinol 48:100–109CrossRefGoogle Scholar
  7. 7.
    Bobrie A, Colombo M, Raposo G et al (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12:1659–1668CrossRefGoogle Scholar
  8. 8.
    Bourin P, Bunnell BA, Casteilla L et al (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15:641–648CrossRefGoogle Scholar
  9. 9.
    Brehm W, Burk J, Delling U (2014) Application of stem cells for the treatment of joint disease in horses. Methods Mol Biol 1213:215–228CrossRefGoogle Scholar
  10. 10.
    Burk J, Badylak SF, Kelly J et al (2013) Equine cellular therapy – from stall to bench to bedside? Cytometry A 83:103–113CrossRefGoogle Scholar
  11. 11.
    Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3:229–230CrossRefGoogle Scholar
  12. 12.
    Caplan Arnold I, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9:11–15CrossRefGoogle Scholar
  13. 13.
    Chen CW, Okada M, Proto JD et al (2013) Human pericytes for ischemic heart repair. Stem Cells 31:305–316CrossRefGoogle Scholar
  14. 14.
    Chen WC, Peault B, Huard J (2015) Regenerative translation of human blood-vessel-derived MSC precursors. Stem Cells Int 2015:375187PubMedPubMedCentralGoogle Scholar
  15. 15.
    Corradetti B, Lange-Consiglio A, Barucca M et al (2011) Size-sieved subpopulations of mesenchymal stem cells from intervascular and perivascular equine umbilical cord matrix. Cell Prolif 44:330–342CrossRefGoogle Scholar
  16. 16.
    Corselli M, Chen CW, Sun B et al (2012) The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 21:1299–1308CrossRefGoogle Scholar
  17. 17.
    Cortés-Araya Y, Amilon K, Rink BE et al (2018) Comparison of antibacterial and immunological properties of mesenchymal stem/stromal cells from equine bone marrow, endometrium and adipose tissue. Stem Cells Dev
  18. 18.
    Crisan M, Corselli M, Chen WCW et al (2012) Perivascular cells for regenerative medicine. J Cell Mol Med 16:2851–2860CrossRefGoogle Scholar
  19. 19.
    Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313CrossRefGoogle Scholar
  20. 20.
    De Schauwer C, Goossens K, Piepers S et al (2014) Characterization and profiling of immunomodulatory genes of equine mesenchymal stromal cells from non-invasive sources. Stem Cell Res Ther 5:6CrossRefGoogle Scholar
  21. 21.
    De Schauwer C, Meyer E, Van De Walle GR et al (2011) Markers of stemness in equine mesenchymal stem cells: a plea for uniformity. Theriogenology 75(8):1431–1443CrossRefGoogle Scholar
  22. 22.
    Dellavalle A, Maroli G, Covarello D et al (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499CrossRefGoogle Scholar
  23. 23.
    Dellavalle A, Sampaolesi M, Tonlorenzi R et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9:255–267CrossRefGoogle Scholar
  24. 24.
    Demoulin J-B, Montano-Almendras CP (2012) Platelet-derived growth factors and their receptors in normal and malignant hematopoiesis. Am J Blood Res 2:44–56PubMedPubMedCentralGoogle Scholar
  25. 25.
    Dominici M, Blanc K, Mueller I (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefGoogle Scholar
  26. 26.
    Donadeu FX, Esteves CL (2015) Prospects and challenges of induced pluripotent stem cells in equine health. Front Vet Sci 2:59CrossRefGoogle Scholar
  27. 27.
    Eliasberg CD, Dar A, Jensen AR et al (2017) Perivascular stem cells diminish muscle atrophy following massive rotator cuff tears in a small animal model. J Bone Joint Surg Am 99:331–341CrossRefGoogle Scholar
  28. 28.
    Esteves CL, Donadeu FX (2018) Pericytes and their potential in regenerative medicine across species. Cytometry A 93(1):50–59CrossRefGoogle Scholar
  29. 29.
    Esteves CL, Sheldrake TA, Dawson L et al (2017) Equine mesenchymal stromal cells retain a pericyte-like phenotype. Stem Cells Dev 26:964–972CrossRefGoogle Scholar
  30. 30.
    Esteves CL, Sheldrake TA, Mesquita SP et al (2017) Isolation and characterization of equine native MSC populations. Stem Cell Res Ther 8:80CrossRefGoogle Scholar
  31. 31.
    Feng J, Mantesso A, De Bari C et al (2011) Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A 108:6503–6508CrossRefGoogle Scholar
  32. 32.
    Fortier LA, Travis AJ (2011) Stem cells in veterinary medicine. Stem Cell Res Ther 2:9CrossRefGoogle Scholar
  33. 33.
    Fuoco C, Sangalli E, Vono R et al (2014) 3D hydrogel environment rejuvenates aged pericytes for skeletal muscle tissue engineering. Front Physiol 5:203CrossRefGoogle Scholar
  34. 34.
    Gugjoo MB, Amarpal, Chandra V et al (2018) Mesenchymal stem cell research in veterinary medicine. Curr Stem Cell Res Ther 13(8):645–657Google Scholar
  35. 35.
    Harman RM, Yang S, He MK et al (2017) Antimicrobial peptides secreted by equine mesenchymal stromal cells inhibit the growth of bacteria commonly found in skin wounds. Stem Cell Res Ther 8:157CrossRefGoogle Scholar
  36. 36.
    He W, Nieponice A, Soletti L et al (2010) Pericyte-based human tissue engineered vascular grafts. Biomaterials 31:8235–8244CrossRefGoogle Scholar
  37. 37.
    Hindle P, Baily JE, Khan N et al (2016) Perivascular mesenchymal stem cells in sheep: characterisation and autologous transplantation in a model of articular cartilage repair. Stem Cells Dev 25(21):1659–1669CrossRefGoogle Scholar
  38. 38.
    James AW, Zhang X, Crisan M et al (2017) Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering. PLoS One 12:e0177308CrossRefGoogle Scholar
  39. 39.
    Johnson V, Webb T, Norman A et al (2017) Activated mesenchymal stem cells interact with antibiotics and host innate immune responses to control chronic bacterial infections. Sci Rep 7:9575CrossRefGoogle Scholar
  40. 40.
    Kisiel AH, Mcduffee LA, Masaoud E et al (2012) Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Am J Vet Res 73:1305–1317CrossRefGoogle Scholar
  41. 41.
    Konig MA, Canepa DD, Cadosch D et al (2016) Direct transplantation of native pericytes from adipose tissue: a new perspective to stimulate healing in critical size bone defects. Cytotherapy 18:41–52CrossRefGoogle Scholar
  42. 42.
    Krautler NJ, Kana V, Kranich J et al (2012) Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150:194–206CrossRefGoogle Scholar
  43. 43.
    Lacitignola L, Crovace A, Rossi G et al (2008) Cell therapy for tendinitis, experimental and clinical report. Vet Res Commun 32:S33–S38CrossRefGoogle Scholar
  44. 44.
    Lauvrud AT, Kelk P, Wiberg M et al (2017) Characterization of human adipose tissue-derived stem cells with enhanced angiogenic and adipogenic properties. J Tissue Eng Regen Med 11(9):2490–2502CrossRefGoogle Scholar
  45. 45.
    Le Blanc K, Davies LC (2015) Mesenchymal stromal cells and the innate immune response. Immunol Lett 168:140–146CrossRefGoogle Scholar
  46. 46.
    Lovati A, Corradetti B, Lange C et al (2011) Comparison of equine bone marrow-, umbilical cord matrix and amniotic fluid-derived progenitor cells. Vet Res Commun 35:103–121CrossRefGoogle Scholar
  47. 47.
    Mendicino M, Bailey A, Wonnacott K et al (2014) MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell 14:141–145CrossRefGoogle Scholar
  48. 48.
    Park TS, Gavina M, Chen CW et al (2011) Placental perivascular cells for human muscle regeneration. Stem Cells Dev 20:451–463CrossRefGoogle Scholar
  49. 49.
    Pevsner-Fischer M, Levin S, Zipori D (2011) The origins of mesenchymal stromal cell heterogeneity. Stem Cell Rev 7:560–568CrossRefGoogle Scholar
  50. 50.
    Ranera B, Antczak D, Miller D et al (2015) Donor-derived equine mesenchymal stem cells suppress proliferation of mismatched lymphocytes. Equine Vet J 48:253–260CrossRefGoogle Scholar
  51. 51.
    Ranera B, Barry F (2014) A horse of a different color. Cytometry A 85:658–659CrossRefGoogle Scholar
  52. 52.
    Ranera B, Lyahyaia J, Romero A et al (2011) Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. Vet Immunol Immunopathol 144:147–154CrossRefGoogle Scholar
  53. 53.
    Remacha AR, Barrachina L, Alvarez-Arguedas S et al (2015) Expression of genes involved in immune response and in vitro immunosuppressive effect of equine MSCs. Vet Immunol Immunopathol 165:107–118CrossRefGoogle Scholar
  54. 54.
    Rink BE, Amilon KR, Esteves CL et al (2017) Isolation and characterization of equine endometrial mesenchymal stromal cells. Stem Cell Res Ther 8:166CrossRefGoogle Scholar
  55. 55.
    Rink E, Teresa B, French H et al (2018) The fate of autologous endometrial mesenchymal stromal cells after application in the healthy equine uterus. Stem Cells Dev 27:1046–1052 0:nullCrossRefGoogle Scholar
  56. 56.
    Sacchetti B, Funari A, Michienzi S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131:324–336CrossRefGoogle Scholar
  57. 57.
    Schnabel LV, Fortier LA, Mcilwraith CW et al (2013) Therapeutic use of stem cells in horses: which type, how, and when? Vet J 197:570–577CrossRefGoogle Scholar
  58. 58.
    Shi Y, Su J, Roberts AI et al (2012) How mesenchymal stem cells interact with tissue immune responses. Trends Immunol 33:136–143CrossRefGoogle Scholar
  59. 59.
    Sims DE (1986) The pericyte – a review. Tissue Cell 18:153–174CrossRefGoogle Scholar
  60. 60.
    Skrahin A, Ahmed RK, Ferrara G et al (2014) Autologous mesenchymal stromal cell infusion as adjunct treatment in patients with multidrug and extensively drug-resistant tuberculosis: an open-label phase 1 safety trial. Lancet Respir Med 2:108–122CrossRefGoogle Scholar
  61. 61.
    Smith AN, Willis E, Chan VT et al (2010) Mesenchymal stem cells induce dermal fibroblast responses to injury. Exp Cell Res 316:48–54CrossRefGoogle Scholar
  62. 62.
    Spaas J, De Schauwer C, Cornillie P et al (2013) Culture and characterisation of equine peripheral blood mesenchymal stromal cells. Vet J 195:107–113CrossRefGoogle Scholar
  63. 63.
    Spitzer TLB, Rojas A, Zelenko Z et al (2012) Perivascular human endometrial mesenchymal stem cells express pathways relevant to self-renewal, lineage specification, and functional phenotype. Biol Reprod 86(58):51–16Google Scholar
  64. 64.
    Tang W, Zeve D, Suh JM et al (2008) White fat progenitor cells reside in the adipose vasculature. Science 322:583–586CrossRefGoogle Scholar
  65. 65.
    Taylor SE, Smith RK, Clegg PD (2007) Mesenchymal stem cell therapy in equine musculoskeletal disease: scientific fact or clinical fiction? Equine Vet J 39:172–180CrossRefGoogle Scholar
  66. 66.
    Tessier L, Bienzle D, Williams LB et al (2015) Phenotypic and immunomodulatory properties of equine cord blood-derived mesenchymal stromal cells. PLoS One 10:e0122954CrossRefGoogle Scholar
  67. 67.
    Van Dijk CG, Nieuweboer FE, Pei JY et al (2015) The complex mural cell: pericyte function in health and disease. Int J Cardiol 190:75–89CrossRefGoogle Scholar
  68. 68.
    Vezina AR, Lavoie-Lamoureux A, Lavoie JP et al (2013) Inflammatory stimuli differentially modulate the transcription of paracrine signaling molecules of equine bone marrow multipotent mesenchymal stromal cells. Osteoarthr Cartil 21:1116–1124CrossRefGoogle Scholar
  69. 69.
    Wilson JG, Liu KD, Zhuo H et al (2015) Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med 3:24–32CrossRefGoogle Scholar
  70. 70.
    Wu CC, Liu FL, Sytwu HK et al (2016) CD146+ mesenchymal stem cells display greater therapeutic potential than CD146- cells for treating collagen-induced arthritis in mice. Stem Cell Res Ther 7:23CrossRefGoogle Scholar
  71. 71.
    Youn SW, Jung K-H, Chu K et al (2015) Feasibility and safety of intra-arterial pericyte progenitor cell delivery following mannitol-induced transient blood brain barrier opening in a canine model. Cell Transplant 24:1469–1479CrossRefGoogle Scholar
  72. 72.
    Zimmerlin L, Donnenberg VS, Pfeifer ME et al (2010) Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77:22–30PubMedPubMedCentralGoogle Scholar
  73. 73.
    Zimmerlin L, Donnenberg VS, Rubin JP et al (2013) Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A 83:134–140CrossRefGoogle Scholar
  74. 74.
    Zumla A, Rao M, Wallis RS et al (2016) Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infect Dis 16:e47–e63CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Division of Developmental BiologyThe Roslin Institute, University of EdinburghEdinburghUK
  2. 2.Euan MacDonald Centre for Motor Neurone Disease Research, University of EdinburghEdinburghUK

Personalised recommendations