Pericyte Secretome

  • Abderahim Gaceb
  • Gesine PaulEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1109)


The role of pericytes seems to extend beyond their known function in angiogenesis, fibrosis and wound healing, blood-brain barrier maintenance, and blood flow regulation. More and more data are currently accumulating indicating that pericytes, uniquely positioned at the interface between blood and parenchyma, secrete a large plethora of different molecules in response to microenvironmental changes. Their secretome is tissue-specific and stimulus-specific and includes pro- and anti-inflammatory factors, growth factors, and extracellular matrix as well as microvesicles suggesting the important role of pericytes in the regulation of immune response and immune evasion of tumors. However, the angiogenic and trophic secretome of pericytes indicates that their secretome plays a role in physiological homeostasis but possibly also in disease progression or could be exploited for regenerative processes in the future. This book chapter summarizes the current data on the secretory properties of pericytes from different tissues in response to certain pathological stimuli such as inflammatory stimuli, hypoxia, high glucose, and others and thereby aims to provide insights into the possible role of pericytes in these conditions.


Pericytes Secretome Angiogenesis Inflammation Regeneration Blood-brain barrier Cytokines Chemokines Growth factor Microvesicles 



Alzheimer disease


Advanced glycation end product




Brain-derived neurotrophic factor


Chemokine (C-C motif)


Cluster of differentiation




Prostaglandin-endoperoxide synthase 2




Endothelial cells


Endothelial growth factor


Epithelial-derived neutrophil-activating peptide


Fibroblast growth factor


Granulocyte colony-stimulating factor


Glial cell-derived neurotrophic factor


Granulocyte-macrophage colony-stimulating factor


Growth-regulated protein alpha/beta/gamma


Guanylate cyclase 1 soluble beta3


Heparin-binding EGF-like growth factor


Hepatocyte growth factor


Hypoxia-inducible factor 1-alpha


Human immunodeficiency virus type-1


Human leukocyte antigen


Heme oxygenase-1


Intercellular adhesion molecule




Insulin-like growth factor-binding protein




Induced nitric oxide synthase


Interferon gamma-induced protein 10


Interferon-inducible T-cell alpha chemoattractant


Japanese encephalitis


Leukemia inhibitory factor




Monocyte chemoattractant protein-1


Major histocompatibility complex


Macrophage migration inhibitory factor


Matrix metalloproteinases




Nerve growth factor


Natural killer


Nitric oxide


NADPH oxidase 4


Neurotrophin 3


Platelet-derived growth factor


Prostaglandin E synthase


Placental growth factor


Regulated on activation normal T-cell expressed and secreted


Reactive oxygen species


Stem cell factor


Stromal cell-derived factor 1 alpha


Selectin E


Thymus- and activation-regulated chemokine


Transforming growth factor


Tumor necrosis factor


Vascular cell adhesion protein


Vascular endothelial growth factor


Zona occludens 1


  1. 1.
    Shepro D, Morel NM (1993) Pericyte physiology. FASEB J 7:1031–1038CrossRefPubMedGoogle Scholar
  2. 2.
    Sims DE (2000) Diversity within pericytes. Clin Exp Pharmacol Physiol 27:842–846CrossRefPubMedGoogle Scholar
  3. 3.
    Sims DE, Westfall JA (1983) Analysis of relationships between pericytes and gas exchange capillaries in neonatal and mature bovine lungs. Microvasc Res 25:333–342CrossRefPubMedGoogle Scholar
  4. 4.
    Armulik A, Genove G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215CrossRefPubMedGoogle Scholar
  5. 5.
    Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14:1398–1405PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martin-Vasallo P, Diaz-Flores L Jr (2009) Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol 24:909–969PubMedPubMedCentralGoogle Scholar
  7. 7.
    Cohen MP, Frank RN, Khalifa AA (1980) Collagen production by cultured retinal capillary pericytes. Invest Ophthalmol Vis Sci 19:90–94PubMedGoogle Scholar
  8. 8.
    Mandarino LJ, Sundarraj N, Finlayson J, Hassell HR (1993) Regulation of fibronectin and laminin synthesis by retinal capillary endothelial cells and pericytes in vitro. Exp Eye Res 57:609–621CrossRefPubMedGoogle Scholar
  9. 9.
    Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114:5091–5101PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561CrossRefPubMedGoogle Scholar
  11. 11.
    Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV (2010) Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–427PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Fisher M (2009) Pericyte signaling in the neurovascular unit. Stroke 40:S13–S15CrossRefPubMedGoogle Scholar
  14. 14.
    Zehendner CM, White R, Hedrich J, Luhmann HJ (2014) A neurovascular blood-brain barrier in vitro model. Methods Mol Biol 1135:403–413CrossRefPubMedGoogle Scholar
  15. 15.
    Lai CH, Kuo KH (2005) The critical component to establish in vitro BBB model: pericyte. Brain Res Brain Res Rev 50:258–265CrossRefPubMedGoogle Scholar
  16. 16.
    Dulmovits BM, Herman IM (2012) Microvascular remodeling and wound healing: a role for pericytes. Int J Biochem Cell Biol 44:1800–1812PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bodnar RJ, Satish L, Yates CC, Wells A (2016) Pericytes: a newly recognized player in wound healing. Wound Repair Regen 24:204–214PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Gaceb A, Barbariga M, Ozen I, Paul G (2018) The pericyte secretome: potential impact on regeneration. Biochimie.
  19. 19.
    Ozen I, Boix J, Paul G (2012) Perivascular mesenchymal stem cells in the adult human brain: a future target for neuroregeneration? Clin Transl Med 1:30PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Thomas H, Cowin AJ, Mills SJ (2017) The importance of pericytes in healing: wounds and other pathologies. Int J Mol Sci 18:1129PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gaengel K, Genove G, Armulik A, Betsholtz C (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29:630–638CrossRefPubMedGoogle Scholar
  22. 22.
    Rustenhoven J, Jansson D, Smyth LC, Dragunow M (2017) Brain pericytes as mediators of neuroinflammation. Trends Pharmacol Sci 38:291–304. Scholar
  23. 23.
    Kovac A, Erickson MA, Banks WA (2011) Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. J Neuroinflammation 8:139PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Nehme A, Edelman J (2008) Dexamethasone inhibits high glucose-, TNF-alpha-, and IL-1beta-induced secretion of inflammatory and angiogenic mediators from retinal microvascular pericytes. Invest Ophthalmol Vis Sci 49:2030–2038CrossRefPubMedGoogle Scholar
  25. 25.
    Balabanov R, Beaumont T, Dore-Duffy P (1999) Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-lymphocytes. J Neurosci Res 55:578–587CrossRefPubMedGoogle Scholar
  26. 26.
    Pieper C, Pieloch P, Galla HJ (2013) Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood-brain barrier. Brain Res 1524:1–11CrossRefPubMedGoogle Scholar
  27. 27.
    Shimizu F, Sano Y, Tominaga O, Maeda T, Abe MA, Kanda T (2013) Advanced glycation end-products disrupt the blood-brain barrier by stimulating the release of transforming growth factor-beta by pericytes and vascular endothelial growth factor and matrix metalloproteinase-2 by endothelial cells in vitro. Neurobiol Aging 34:1902–1912CrossRefPubMedGoogle Scholar
  28. 28.
    Verbeek MM, Westphal JR, Ruiter DJ, de Waal RM (1995) T lymphocyte adhesion to human brain pericytes is mediated via very late antigen-4/vascular cell adhesion molecule-1 interactions. J Immunol 154:5876–5884PubMedGoogle Scholar
  29. 29.
    Beckman JD, Grazul-Bilska AT, Johnson ML, Reynolds LP, Redmer DA (2006) Isolation and characterization of ovine luteal pericytes and effects of nitric oxide on pericyte expression of angiogenic factors. Endocrine 29:467–476CrossRefPubMedGoogle Scholar
  30. 30.
    Thanabalasundaram G, Pieper C, Lischper M, Galla HJ (2010) Regulation of the blood-brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro. Brain Res 1347:1–10CrossRefPubMedGoogle Scholar
  31. 31.
    Shimizu F, Sano Y, Abe MA, Maeda T, Ohtsuki S, Terasaki T, Kanda T (2011) Peripheral nerve pericytes modify the blood-nerve barrier function and tight junctional molecules through the secretion of various soluble factors. J Cell Physiol 226:255–266CrossRefPubMedGoogle Scholar
  32. 32.
    Ochs K, Sahm F, Opitz CA, Lanz TV, Oezen I, Couraud PO, von Deimling A, Wick W, Platten M (2013) Immature mesenchymal stem cell-like pericytes as mediators of immunosuppression in human malignant glioma. J Neuroimmunol 265:106–116CrossRefPubMedGoogle Scholar
  33. 33.
    Ayres-Sander CE, Lauridsen H, Maier CL, Sava P, Pober JS, Gonzalez AL (2013) Transendothelial migration enables subsequent transmigration of neutrophils through underlying pericytes. PLoS One 8:e60025PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Bruhl ML, Gartner F, Khandoga AG, Legate KR, Pless R, Hepper I, Lauber K, Walzog B, Massberg S (2013) Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol 14:41–51PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Bose A, Barik S, Banerjee S, Ghosh T, Mallick A, Bhattacharyya Majumdar S, Goswami KK, Bhuniya A, Banerjee S, Baral R, Storkus WJ, Dasgupta PS, Majumdar S (2013) Tumor-derived vascular pericytes anergize Th cells. J Immunol 191:971–981CrossRefPubMedGoogle Scholar
  36. 36.
    Pieper C, Marek JJ, Unterberg M, Schwerdtle T, Galla HJ (2014) Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res 1550:1–8CrossRefPubMedGoogle Scholar
  37. 37.
    Marra F, Bonewald LF, Park-Snyder S, Park IS, Woodruff KA, Abboud HE (1996) Characterization and regulation of the latent transforming growth factor-beta complex secreted by vascular pericytes. J Cell Physiol 166:537–546CrossRefPubMedGoogle Scholar
  38. 38.
    Alcendor DJ, Charest AM, Zhu WQ, Vigil HE, Knobel SM (2012) Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus. J Neuroinflammation 9:95PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Nakagawa S, Castro V, Toborek M (2012) Infection of human pericytes by HIV-1 disrupts the integrity of the blood-brain barrier. J Cell Mol Med 16:2950–2957PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chen CJ, Ou YC, Li JR, Chang CY, Pan HC, Lai CY, Liao SL, Raung SL, Chang CJ (2014) Infection of pericytes in vitro by Japanese encephalitis virus disrupts the integrity of the endothelial barrier. J Virol 88:1150–1161PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Takata F, Dohgu S, Matsumoto J, Takahashi H, Machida T, Wakigawa T, Harada E, Miyaji H, Koga M, Nishioku T, Yamauchi A, Kataoka Y (2011) Brain pericytes among cells constituting the blood-brain barrier are highly sensitive to tumor necrosis factor-alpha, releasing matrix metalloproteinase-9 and migrating in vitro. J Neuroinflammation 8:106PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sundberg C, Kowanetz M, Brown LF, Detmar M, Dvorak HF (2002) Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Lab Investig 82:387–401CrossRefPubMedGoogle Scholar
  43. 43.
    Wakui S, Yokoo K, Muto T, Suzuki Y, Takahashi H, Furusato M, Hano H, Endou H, Kanai Y (2006) Localization of Ang-1, -2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis. Lab Investig 86:1172–1184CrossRefGoogle Scholar
  44. 44.
    Chakroborty D, Sarkar C, Yu H, Wang J, Liu Z, Dasgupta PS, Basu S (2011) Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proc Natl Acad Sci U S A 108:20730–20735PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Guijarro-Munoz I, Compte M, Alvarez-Cienfuegos A, Alvarez-Vallina L, Sanz L (2014) Lipopolysaccharide activates toll-like receptor 4 (TLR4)-mediated NF-kappaB signaling pathway and proinflammatory response in human pericytes. J Biol Chem 289:2457–2468CrossRefPubMedGoogle Scholar
  46. 46.
    Darland DC, Massingham LJ, Smith SR, Piek E, Saint-Geniez M, D’Amore PA (2003) Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev Biol 264:275–288CrossRefPubMedGoogle Scholar
  47. 47.
    Hoier B, Prats C, Qvortrup K, Pilegaard H, Bangsbo J, Hellsten Y (2013) Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle. FASEB J 27:3496–3504CrossRefPubMedGoogle Scholar
  48. 48.
    Smith AM, Graham ES, Feng SX, Oldfield RL, Bergin PM, Mee EW, Faull RL, Curtis MA, Dragunow M (2013) Adult human glia, pericytes and meningeal fibroblasts respond similarly to IFNy but not to TGFbeta1 or M-CSF. PLoS One 8:e80463PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Tu Z, Li Y, Smith DS, Sheibani N, Huang S, Kern T, Lin F (2011) Retinal pericytes inhibit activated T cell proliferation. Invest Ophthalmol Vis Sci 52:9005–9010PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Chen CW, Okada M, Proto JD, Gao X, Sekiya N, Beckman SA, Corselli M, Crisan M, Saparov A, Tobita K, Peault B, Huard J (2013) Human pericytes for ischemic heart repair. Stem Cells 31:305–316PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Vidro EK, Gee S, Unda R, Ma JX, Tsin A (2008) Glucose and TGFbeta2 modulate the viability of cultured human retinal pericytes and their VEGF release. Curr Eye Res 33:984–993PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Takagi H, King GL, Robinson GS, Ferrara N, Aiello LP (1996) Adenosine mediates hypoxic induction of vascular endothelial growth factor in retinal pericytes and endothelial cells. Invest Ophthalmol Vis Sci 37:2165–2176PubMedGoogle Scholar
  53. 53.
    Rustenhoven J, Aalderink M, Scotter EL, Oldfield RL, Bergin PS, Mee EW, Graham ES, Faull RL, Curtis MA, Park TI, Dragunow M (2016) TGF-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J Neuroinflammation 13:37PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Watanabe S, Morisaki N, Tezuka M, Fukuda K, Ueda S, Koyama N, Yokote K, Kanzaki T, Yoshida S, Saito Y (1997) Cultured retinal pericytes stimulate in vitro angiogenesis of endothelial cells through secretion of a fibroblast growth factor-like molecule. Atherosclerosis 130:101–107CrossRefPubMedGoogle Scholar
  55. 55.
    Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, Yang X, Nakamura M, Wang J, Zhuang R, Morikawa H, Xue Y, Braun H, Beyaert R, Samani N, Nakae S, Hams E, Dissing S, Fallon PG, Langer R, Cao Y (2016) The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun 7:11385PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Fabry Z, Fitzsimmons KM, Herlein JA, Moninger TO, Dobbs MB, Hart MN (1993) Production of the cytokines interleukin 1 and 6 by murine brain microvessel endothelium and smooth muscle pericytes. J Neuroimmunol 47:23–34CrossRefPubMedGoogle Scholar
  57. 57.
    Smyth LCD, Rustenhoven J, Park TI, Schweder P, Jansson D, Heppner PA, O’Carroll SJ, Mee EW, Faull RLM, Curtis M, Dragunow M (2018) Unique and shared inflammatory profiles of human brain endothelia and pericytes. J Neuroinflammation 15:138PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Gaceb A, Ozen I, Padel T, Barbariga M, Paul G (2018) Pericytes secrete pro-regenerative molecules in response to platelet-derived growth factor-BB. J Cereb Blood Flow Metab 38:45–57CrossRefPubMedGoogle Scholar
  59. 59.
    Jansson D, Rustenhoven J, Feng S, Hurley D, Oldfield RL, Bergin PS, Mee EW, Faull RL, Dragunow M (2014) A role for human brain pericytes in neuroinflammation. J Neuroinflammation 11:104PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Maier CL, Pober JS (2011) Human placental pericytes poorly stimulate and actively regulate allogeneic CD4 T cell responses. Arterioscler Thromb Vasc Biol 31:183–189CrossRefPubMedGoogle Scholar
  61. 61.
    Ikeda K, Kinoshita M, Tagaya N, Shiojima T, Taga T, Yasukawa K, Suzuki H, Okano A (1996) Coadministration of interleukin-6 (IL-6) and soluble IL-6 receptor delays progression of wobbler mouse motor neuron disease. Brain Res 726:91–97CrossRefPubMedGoogle Scholar
  62. 62.
    Paiva AE, Lousado L, Guerra DAP, Azevedo PO, Sena IFG, Andreotti JP, Santos GSP, Goncalves R, Mintz A, Birbrair A (2018) Pericytes in the premetastatic niche. Cancer Res 78:2779–2786CrossRefPubMedGoogle Scholar
  63. 63.
    Valdor R, Garcia-Bernal D, Bueno C, Rodenas M, Moraleda JM, Macian F, Martinez S (2017) Glioblastoma progression is assisted by induction of immunosuppressive function of pericytes through interaction with tumor cells. Oncotarget 8:68614–68626PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ferland-McCollough D, Slater S, Richard J, Reni C, Mangialardi G (2017) Pericytes, an overlooked player in vascular pathobiology. Pharmacol Ther 171:30–42PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Shen F, Su H, Fan Y, Chen Y, Zhu Y, Liu W, Young WL, Yang GY (2006) Adeno-associated viral-vector-mediated hypoxia-inducible vascular endothelial growth factor gene expression attenuates ischemic brain injury after focal cerebral ischemia in mice. Stroke 37:2601–2606CrossRefPubMedGoogle Scholar
  66. 66.
    Ribatti D, Djonov V (2011) Angiogenesis in development and cancer today. Int J Dev Biol 55:343–344CrossRefPubMedGoogle Scholar
  67. 67.
    von Tell D, Armulik A, Betsholtz C (2006) Pericytes and vascular stability. Exp Cell Res 312:623–629CrossRefGoogle Scholar
  68. 68.
    Ellison-Hughes GM, Madeddu P (2017) Exploring pericyte and cardiac stem cell secretome unveils new tactics for drug discovery. Pharmacol Ther 171:1–12PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Eklund L, Olsen BR (2006) Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp Cell Res 312:630–641CrossRefPubMedGoogle Scholar
  70. 70.
    Thurston G, Daly C (2012) The complex role of angiopoietin-2 in the angiopoietin-tie signaling pathway. Cold Spring Harb Perspect Med 2:a006550CrossRefPubMedGoogle Scholar
  71. 71.
    Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y (2005) Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Res 1038:208–215CrossRefPubMedGoogle Scholar
  72. 72.
    Ishitsuka K, Ago T, Arimura K, Nakamura K, Tokami H, Makihara N, Kuroda J, Kamouchi M, Kitazono T (2012) Neurotrophin production in brain pericytes during hypoxia: a role of pericytes for neuroprotection. Microvasc Res 83:352–359CrossRefPubMedGoogle Scholar
  73. 73.
    Katare R, Riu F, Mitchell K, Gubernator M, Campagnolo P, Cui Y, Fortunato O, Avolio E, Cesselli D, Beltrami AP, Angelini G, Emanueli C, Madeddu P (2011) Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res 109:894–906PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ozen I, Deierborg T, Miharada K, Padel T, Englund E, Genove G, Paul G (2014) Brain pericytes acquire a microglial phenotype after stroke. Acta Neuropathol 128:381–396PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Enciu AM, Gherghiceanu M, Popescu BO (2013) Triggers and effectors of oxidative stress at blood-brain barrier level: relevance for brain ageing and neurodegeneration. Oxidative Med Cell Longev 2013:297512CrossRefGoogle Scholar
  76. 76.
    Sharma JN, Al-Omran A, Parvathy SS (2007) Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15:252–259CrossRefPubMedGoogle Scholar
  77. 77.
    Goldin A, Beckman JA, Schmidt AM, Creager MA (2006) Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114:597–605CrossRefPubMedGoogle Scholar
  78. 78.
    Jakobsson L, van Meeteren LA (2013) Transforming growth factor beta family members in regulation of vascular function: in the light of vascular conditional knockouts. Exp Cell Res 319:1264–1270CrossRefPubMedGoogle Scholar
  79. 79.
    Gaceb A, Martinez MC, Andriantsitohaina R (2014) Extracellular vesicles: new players in cardiovascular diseases. Int J Biochem Cell Biol 50:24–28CrossRefPubMedGoogle Scholar
  80. 80.
    Tual-Chalot S, Leonetti D, Andriantsitohaina R, Martinez MC (2011) Microvesicles: intercellular vectors of biological messages. Mol Interv 11:88–94CrossRefPubMedGoogle Scholar
  81. 81.
    EL Andaloussi S, Mager I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12:347–357CrossRefGoogle Scholar
  82. 82.
    Genove G, Mollick T, Johansson K (2014) Photoreceptor degeneration, structural remodeling and glial activation: a morphological study on a genetic mouse model for pericyte deficiency. Neuroscience 279:269–284CrossRefPubMedGoogle Scholar
  83. 83.
    Zhu Y, Chen X, Liu Z, Peng YP, Qiu YH (2015) Interleukin-10 protection against lipopolysaccharide-induced neuro-inflammation and neurotoxicity in ventral mesencephalic cultures. Int J Mol Sci 17:25PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Mahfouz MM, Abdelsalam RM, Masoud MA, Mansour HA, Ahmed-Farid OA, Kenawy SA (2017) The neuroprotective effect of mesenchymal stem cells on an experimentally induced model for multiple sclerosis in mice. J Biochem Mol Toxicol 31.
  85. 85.
    Cho SH, Sun B, Zhou Y, Kauppinen TM, Halabisky B, Wes P, Ransohoff RM, Gan L (2011) CX3CR1 protein signaling modulates microglial activation and protects against plaque-independent cognitive deficits in a mouse model of Alzheimer disease. J Biol Chem 286:32713–32722PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Merino JJ, Muneton-Gomez V, Alvarez MI, Toledano-Diaz A (2016) Effects of CX3CR1 and fractalkine chemokines in amyloid beta clearance and p-tau accumulation in Alzheimer’s disease (AD) rodent models: is fractalkine a systemic biomarker for AD? Curr Alzheimer Res 13:403–412CrossRefPubMedGoogle Scholar
  87. 87.
    Bauer S, Patterson PH (2006) Leukemia inhibitory factor promotes neural stem cell self-renewal in the adult brain. J Neurosci 26:12089–12099CrossRefPubMedGoogle Scholar
  88. 88.
    Fontaine RH, Cases O, Lelievre V, Mesples B, Renauld JC, Loron G, Degos V, Dournaud P, Baud O, Gressens P (2008) IL-9/IL-9 receptor signaling selectively protects cortical neurons against developmental apoptosis. Cell Death Differ 15:1542–1552CrossRefPubMedGoogle Scholar
  89. 89.
    Estrada LD, Oliveira-Cruz L, Cabrera D (2017) Transforming growth factor beta type I role in neurodegeneration: implications for Alzheimer s disease. Curr Protein Pept Sci.
  90. 90.
    Miller AM, Liew FY (2011) The IL-33/ST2 pathway – a new therapeutic target in cardiovascular disease. Pharmacol Ther 131:179–186CrossRefPubMedGoogle Scholar
  91. 91.
    Chapuis J, Hot D, Hansmannel F, Kerdraon O, Ferreira S, Hubans C, Maurage CA, Huot L, Bensemain F, Laumet G, Ayral AM, Fievet N, Hauw JJ, DeKosky ST, Lemoine Y, Iwatsubo T, Wavrant-Devrieze F, Dartigues JF, Tzourio C, Buee L, Pasquier F, Berr C, Mann D, Lendon C, Alperovitch A, Kamboh MI, Amouyel P, Lambert JC (2009) Transcriptomic and genetic studies identify IL-33 as a candidate gene for Alzheimer’s disease. Mol Psychiatry 14:1004–1016PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Zhong J, Dietzel ID, Wahle P, Kopf M, Heumann R (1999) Sensory impairments and delayed regeneration of sensory axons in interleukin-6-deficient mice. J Neurosci 19:4305–4313CrossRefPubMedGoogle Scholar
  93. 93.
    Hirota H, Kiyama H, Kishimoto T, Taga T (1996) Accelerated nerve regeneration in mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma. J Exp Med 183:2627–2634CrossRefPubMedGoogle Scholar
  94. 94.
    Murphy PG, Borthwick LA, Altares M, Gauldie J, Kaplan D, Richardson PM (2000) Reciprocal actions of interleukin-6 and brain-derived neurotrophic factor on rat and mouse primary sensory neurons. Eur J Neurosci 12:1891–1899CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Translational Neurology Group, Department of Clinical Sciences and Wallenberg Center for Molecular Medicine, Department of NeurologyLund UniversityLundSweden
  2. 2.Skåne University HospitalLundSweden

Personalised recommendations