Skip to main content

Numerical Approaches for Kinetic and Hyperbolic Models

  • Chapter
  • First Online:
  • 999 Accesses

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2232))

Abstract

Due to the complexity of hyperbolic and kinetic models discussed in the previous chapters, it is difficult to gain much understanding of the behaviour of the models only from analytical results. As we have already seen throughout this study, numerical approaches are critical when trying to unravel the patterns exhibited by these models. There are a large variety of approaches to discretise and simulate numerically the kinetic and hyperbolic models described in the previous sections. However, due to the intense activity of this field, it is impossible to do a detailed review of all numerical schemes developed over the past 50–60 years. Therefore, in this chapter we briefly discuss some of these approaches, to give the reader a glimpse of the large variety of numerical schemes existent in the literature. We start by discussing a few numerical methods for macroscopic hyperbolic models, followed by a discussion on the numerical methods for more complex (and higher dimension) kinetic equations. We conclude this chapter with a brief overview of different boundary conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Dimarco, L. Pareschi, Acta Numer. 23, 369 (2014)

    Article  MathSciNet  Google Scholar 

  2. G. Colonna, in Plasma Modelling. Methods and Applications, ed. by G. Colonna, A. D’Angola (IOP, London, 2016), pp. 1–23

    Google Scholar 

  3. R. LeVeque, Numerical Methods for Conservation Laws (Birkhäuser, Basel, 1992)

    Chapter  MATH  Google Scholar 

  4. C.W. Shu, in High-Order Methods for Computational Physics, vol. 9, ed. by T. Barth, H. Deconinck (Springer, Berlin, 1999), pp. 439–582

    Google Scholar 

  5. F. Filbet, G. Russo, in Modelling and Computational Methods for Kinetic Equations, ed. by P. Degod, L. Pareschi, G. Russo (Birkhäuser, Boston, 2004), pp. 117–145

    Google Scholar 

  6. F. Filbet, T. Rey, SIAM J. Sci. Comput. 37(3), A1218 (2015)

    Article  Google Scholar 

  7. L. Pareschi, G. Russo, G. Toscani, Modelling and Numerics of Kinetic Dissipative Systems (Nova Science Publ., New York, 2006)

    MATH  Google Scholar 

  8. S. MacNamara, G. Strang, in Splitting Methods in Communication, Imaging, Science and Engineering, ed. by R. Glowinski, S. Osher, W. Yin (Springer, Cham, 2017), pp. 95–114

    Google Scholar 

  9. J. Butcher, Numerical Methods for Ordinary Differential Equations (Wiley, Hoboken, 2008)

    Book  MATH  Google Scholar 

  10. W. Hackbusch, Integral Equations: Theory and Numerical Treatment. International Series of Numerical Mathematics (Birkhäuser, Basel, 2012)

    Google Scholar 

  11. W. Press, S. Teukolsky, W. Vetterling, B. Flannery, Numerical Recipes in C. The Art of Scientific Computing, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  12. R. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  13. C. Chu, Advances in Applied Mechanics, vol. 18 (Academic, New York, 1979), pp. 285–331

    Google Scholar 

  14. J. Furst, K. Kozel, Math. Bohem. 126(2), 379 (2001)

    MathSciNet  Google Scholar 

  15. N. Taniguchi, T. Kobayashi, Comput. Fluids 19(3–4), 287 (1991)

    Article  Google Scholar 

  16. S. Godunov, Math. Sbornik 47, 271 (1959)

    Google Scholar 

  17. A. Harten, J. Comput. Phys. 49(2), 357 (1983)

    Article  MathSciNet  Google Scholar 

  18. A. Harten, B. Engquist, S. Osher, S. Chakravarty, J. Comput. Phys. 71(2), 231 (1987)

    Article  MathSciNet  Google Scholar 

  19. C.W. Shu, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, ed. by B. Cockburn, C. Johnson, C.W. Shu, E. Tadmor. Lecture Notes in Mathematics, vol. 1697 (Springer, Berlin, 1998), pp. 325–432

    Google Scholar 

  20. C. Shu, SIAM Rev. 51(1), 82 (2009)

    Article  MathSciNet  Google Scholar 

  21. E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

  22. H. Nessyahu, E. Tadmor, J. Comput. Phys. 87, 408 (1990)

    Article  MathSciNet  Google Scholar 

  23. P. Roe, J. Comput. Phys. 43, 357 (1981)

    Article  MathSciNet  Google Scholar 

  24. B.V. Leer, J. Comput. Phys. 23(3), 263 (1977)

    Article  Google Scholar 

  25. P. Roe, Annu. Rev. Fluid Mech. 18, 337 (1986)

    Article  Google Scholar 

  26. P. Sweby, SIAM J. Numer. Anal. 21(5), 995 (1984)

    Article  MathSciNet  Google Scholar 

  27. B.V. Leer, J. Comput. Phys. 14(4), 361 (1974)

    Article  Google Scholar 

  28. G.S. Jiang, E. Tadmor, SIAM J. Sci. Comput. 19(6), 1892 (1998)

    Article  MathSciNet  Google Scholar 

  29. E. Godlewski, P. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws (Springer, New York, 1996)

    Book  MATH  Google Scholar 

  30. L. Pareschi, G. Russo, ESAIM Proc. 10, 35–75 (2001)

    Article  Google Scholar 

  31. B. Lapeyre, E. Pardoux, R. Sentis, Introduction to Monte-Carlo Methods for Transport and Diffusion Equations (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  32. S. Rajasanow, W. Wagner, Stochastic Numerics for the Boltzmann Equation (Springer, Berlin, 2005)

    Google Scholar 

  33. L. Pareschi, G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods (Oxford University Press, Oxford, 2014)

    MATH  Google Scholar 

  34. L. Pareschi, G. Toscani, C. Villani, Numer. Math. 93, 527 (2003)

    Article  MathSciNet  Google Scholar 

  35. L. Pareschi, B. Perthame, Transp. Theory Stat. Phys. 25(3–5), 369 (1996)

    Article  Google Scholar 

  36. L. Pareschi, G. Russo, Transp. Theory Stat. Phys. 29(3–5), 431 (2000)

    Article  Google Scholar 

  37. L. Pareschi, G. Russo, SIAM J. Numer. Anal. 37, 1217 (2000)

    Article  MathSciNet  Google Scholar 

  38. I. Gamba, J. Haack, S. Motsch, J. Comput. Phys. 297, 32 (2015)

    Article  MathSciNet  Google Scholar 

  39. P. Degond, L. Pareschi, G. Russo (eds.), Modelling and Computational Methods for Kinetic Equations (Birkhäuser, Boston, 2004)

    Google Scholar 

  40. F. Rogier, J. Schneider, Transp. Theory Stat. Phys. 23(1–3), 313 (1994)

    Article  Google Scholar 

  41. G. Bird, Molecular Gas Dynamics (Oxford University Press, London, 1976)

    Google Scholar 

  42. G. Bird, Molecular Gas Dynamics and Direct Simulation of Gas Flows (Clarendon Press, Oxford, 1994)

    Google Scholar 

  43. L. Pareschi, G. Russo, SIAM J. Sci. Comput. 23(4), 1253 (2001)

    Article  MathSciNet  Google Scholar 

  44. K. Nanbu, in Proceedings of the 15th International Symposium on Rarefied Gas Dynamics, ed. by V. Boffi, C. Cercignani (1986), pp. 369–383

    Google Scholar 

  45. H. Babovsky, Math. Methods Appl. Sci. 8, 223 (1986)

    Article  MathSciNet  Google Scholar 

  46. I. Boyd, J. Stark, J. Comput. Phys. 80(2), 374 (1989)

    Article  Google Scholar 

  47. L. Pan, G. Liu, B. Khoo, B. Song, J. Micromech. Microeng. 10(1), 21 (2000)

    Article  Google Scholar 

  48. L. Chao, S. Kwak, S. Ansumali, Int. J. Mod. Phys. 25, 1340023 (2014)

    Article  Google Scholar 

  49. G. Dimarco, L. Pareschi, in Hyperbolic Problems: Theory, Numerics, Applications, ed. by S. Benzoni-Gavage, D. Serre (Springer, Berlin, 2008)

    Google Scholar 

  50. L. Pareschi, G. Russo, Transp. Theory Stat. Phys. 29(3–5), 415 (2000)

    Article  Google Scholar 

  51. P. Degond, Panoramas et Syntheses 39–40, 1 (2013)

    Google Scholar 

  52. J. Carrillo, R. Eftimie, F. Hoffmann, Kinetic Relat. Model. 8(3), 413 (2015)

    Article  Google Scholar 

  53. E. Gabetta, L. Pareschi, G. Toscani, SIAM. J. Numer. Anal. 34(6), 2168 (1997)

    Article  MathSciNet  Google Scholar 

  54. S. Jin, Riv. Mat. Univ. Parma 3, 177 (2012)

    Google Scholar 

  55. P. Degond, G. Dimarco, L. Mieussens, J. Comput. Phys. 227(2), 1176 (2007)

    Article  MathSciNet  Google Scholar 

  56. C. Cercignani, The Boltzmann Equation and Its Applications (Springer, New York, 1987)

    MATH  Google Scholar 

  57. G.D.P. Degond, L. Pareschi, Int. J. Numer. Methods Fluids 67(2), 189 (2011)

    Article  Google Scholar 

  58. G. Radtke, N. Hadjiconstantinou, Phys. Rev. E 79, 056711 (2009)

    Article  Google Scholar 

  59. L. Pareschi, R. Caflisch, IMA J. Appl. Math. 135, 57 (2004)

    Google Scholar 

  60. L. Pareschi, ESAIM Proc. 15, 87 (2005)

    Article  Google Scholar 

  61. P. Degond, S. Jin, L. Mieussens, J. Comput. Phys. 209, 665 (2005)

    Article  MathSciNet  Google Scholar 

  62. S. Chen, E. Weinan, Y. Liu, C.W. Shu, J. Comput. Phys. 225(2), 1314 (2007)

    Article  MathSciNet  Google Scholar 

  63. G. Radtke, J.P. Péraud, N. Hadjiconstantinou, Philos. Trans. R. Soc. A 23, 030606 (2013)

    Google Scholar 

  64. W. Ren, H. Liu, S. Jin, J. Comput. Phys. 276, 380 (2014)

    Article  MathSciNet  Google Scholar 

  65. B. Zhang, H. Liu, S. Jin, J. Comput. Phys. 305, 575 (2016)

    Article  MathSciNet  Google Scholar 

  66. J. Bourgat, P. LeTallec, B. Berthame, Y. Qiu, Contemp. Math. 157, 377 (1994)

    Article  Google Scholar 

  67. S. Tiwari, J. Comput. Phys. 144(2), 710 (1998)

    Article  MathSciNet  Google Scholar 

  68. K. Hadeler, Math. Comput. Model. 31(4–5), 75 (2000)

    Article  Google Scholar 

  69. T. Hillen, Can. Appl. Math. Q. 18(1), 1 (2010)

    MathSciNet  Google Scholar 

  70. J. Buhl, D.J.T. Sumpter, I.D. Couzin, J.J. Hale, E. Despland, E.R. Miller, S.J. Simpson, Science 312, 1402 (2006)

    Article  Google Scholar 

  71. A. Portz, A. Seyfried, in Pedestrian and Evacuation Dynamics, ed. by R. Peacock, E. Kuligowski, J. Averill (Springer, Boston, 2011), pp. 577–586

    Chapter  Google Scholar 

  72. F. Filbert, Multiscale Model. Simul. 10(3), 792 (2012)

    Article  MathSciNet  Google Scholar 

  73. J.P. Péraud, C. Landon, N. Hadjiconstantinou, Annu. Rev. Heat Tranf. 17, 205 (2014)

    Article  Google Scholar 

  74. C. Cercignani, Theory and Application of the Boltzmann Equation (Scottish Academic Press, Edinburgh, 1975)

    MATH  Google Scholar 

  75. S. Ansumali, I. Karlin, Phys. Rev. E 66(2), 026311 (2002)

    Article  MathSciNet  Google Scholar 

  76. C.D. Wilson, R.K. Agarwal, F.G. Tcheremissine, Evaluation of various types of wall boundary conditions for the Boltzmann equation. AIP Conf. Proc. 1333, 146–151 (2011)

    Article  Google Scholar 

  77. S. Jin, L. Pareschi, G. Toscani, SIAM J. Numer. Anal. 38, 312 (2000)

    Article  Google Scholar 

  78. M. Lemou, F. Méhats, SIAM J. Sci. Comput. 34(6), B734 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eftimie, R. (2018). Numerical Approaches for Kinetic and Hyperbolic Models. In: Hyperbolic and Kinetic Models for Self-organised Biological Aggregations. Lecture Notes in Mathematics(), vol 2232. Springer, Cham. https://doi.org/10.1007/978-3-030-02586-1_7

Download citation

Publish with us

Policies and ethics