Skip to main content

Multi-Dimensional Transport Equations

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2232))

Abstract

One-dimensional (1D) models are simple enough to be investigated analytically and numerically. However, they are not very biological realistic since the majority of behaviours observed in nature occur in 2D or 3D. In this chapter we review different types of 2D kinetic models derived to investigate the movement and local/nonlocal interactions of individuals inside one or multiple populations of cells/bacteria/animals/pedestrians. In this context, we also discuss a few explicit multi-scale models which assume that the dynamics of the (cell) populations depend on their molecular-level states. While the majority of the models considered here are deterministic, we draw attention to a few models that incorporate explicit stochastic events. In addition to reviewing all these different kinetic models, we present in more detail a few analytical approaches used to investigate these models: from the derivation of mean-field models, to hyperbolic and parabolic scaling, and grazing collision limits.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D. Trucu, P. Lin, M. Chaplain, Y. Wang, Multiscale Model. Simul. SIAM Interdisciplinary J. 11(1), 309 (2013)

    Article  Google Scholar 

  2. P. Domschke, D. Trucu, A. Gerisch, M. Chaplain, J. Theor. Biol. 361, 41 (2014)

    Article  Google Scholar 

  3. C. Engwer, T. Hillen, M. Knappitsch, C. Surulescu, J. Math. Biol. 71, 551 (2015)

    Article  MathSciNet  Google Scholar 

  4. B. Perthame, M. tang, N. Vauchelet, J. Math. Biol. 73(5), 1161 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Engwer, C. Stinner, C. Surulescu, Math. Models Meth. Appl. Sci. 27, 1355 (2017)

    Article  Google Scholar 

  6. A. Hunt, C. Surulescu, Vietnam J. Math. 45, 221 (2017)

    Article  MathSciNet  Google Scholar 

  7. C.M. Topaz, A.L. Bertozzi, SIAM J. Appl. Math. 65, 152 (2004)

    Article  MathSciNet  Google Scholar 

  8. R. Fetecau, Math. Model. Method. Appl. Sci 21(7), 1539 (2011)

    Article  Google Scholar 

  9. R. Fetecau, J. Meskas, Swarm Intell. https://doi.org/10.1007/s11721-013-0084-9 (2013)

    Article  Google Scholar 

  10. P. Degond, J.G. Liu, S. Motsch, V. Panferov, Methods Appl. Anal. 20, 89 (2013)

    MathSciNet  Google Scholar 

  11. P. Degond, A. Frouvelle, S. Merino-Aceituno, Math. Models Methods Appl. Sci. 27(6), 1005 (2017)

    Article  MathSciNet  Google Scholar 

  12. Y. Xia, S. Wong, C.W. Shu, Phys. Rev. E 79, 066113 (2009)

    Article  Google Scholar 

  13. N. Bellomo, C. Dogbé, SIAM Rev. 53, 409 (2011)

    Article  MathSciNet  Google Scholar 

  14. N. Bellomo, L. Gibelli, Math. Model Meth. Appl. Sci. 25, 2417 (2015)

    Article  Google Scholar 

  15. D. Burini, S.D. Lillo, L. Gibelli, Phys. Life Rev. 16, 123 (2016)

    Article  Google Scholar 

  16. J. Nieto, L. Urrutia, J. Math. Anal. Appl. 433(2), 1055 (2017)

    Article  Google Scholar 

  17. N. Bellomo, C. Dogbé, Math. Models Methods Appl. Sci. 18, 1317 (2008)

    Article  MathSciNet  Google Scholar 

  18. R. LeVeque, Numerical Methods for Conservation Laws (Birkhäuser, Basel, 1992)

    Chapter  MATH  Google Scholar 

  19. J. Kelkel, C. Surulescu, Math. Models Methods Appl. Sci. 22(3), 1150017 (2012)

    Article  MathSciNet  Google Scholar 

  20. Y. Dolak, C. Schmeiser, J. Math. Biol. 51, 595 (2005)

    Article  MathSciNet  Google Scholar 

  21. R. Hughes, Transport. Res. B 36, 507 (2002)

    Article  Google Scholar 

  22. V. Coscia, C. Canavesio, Math. Models Methods Appl. Sci. 18, 1217 (2008)

    Article  MathSciNet  Google Scholar 

  23. M. Lighthill, G. Whitham, Proc. R. Soc. Lond. Ser. A. 229(1178), 317 (1955)

    Article  Google Scholar 

  24. M. Kac, Rocky Mountain J. Math. 4, 497 (1974)

    Article  MathSciNet  Google Scholar 

  25. S. Goldstein, Quart. J. Mech. Appl. Math. 4, 129 (1951)

    Article  MathSciNet  Google Scholar 

  26. K. Hadeler, Mathematics Inspired by Biology. Lecture Notes in Mathematics (Springer Verlag, 1999), chap. Reaction transport systems in biological modelling, pp. 95–150

    Google Scholar 

  27. J. Keller, Proc. Natl. Acad. Sci. USA 101(5), 1120 (2004)

    Article  MathSciNet  Google Scholar 

  28. E. Codling, M. Plank, S. Benhamou, J. Roy. Soc. Interface 5(25), 813 (2008)

    Article  Google Scholar 

  29. D. Stroock, Probab. Theory Rel. Fields 28, 305 (1974)

    Google Scholar 

  30. H.G. Othmer, S.R. Dunbar, W. Alt, J. Math. Biol. 26, 263 (1988)

    Article  MathSciNet  Google Scholar 

  31. W. Alt, J. Math. Biol. 9, 147 (1980)

    Article  MathSciNet  Google Scholar 

  32. H. Schwetlick, Annales de l’Institut Henri Poincare 17(4), 523 (2000)

    Article  MathSciNet  Google Scholar 

  33. R. Colombo, M. Lécureux-Mercier, Acta Math. Sci. 32(1), 177 (2012)

    Article  MathSciNet  Google Scholar 

  34. R. Colombo, M. Garavello, M. Lécureux-Mercier, Math. Models Methods Appl. Sci. 22(4), 1150023 (2012)

    Article  MathSciNet  Google Scholar 

  35. M. Lécureux-Mercier, ESAIM Proc. 38, 409 (2012)

    Article  Google Scholar 

  36. A. Majda, A. Bertozzi, Vorticity and Incompressible Flow (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  37. A. Bertozzi, J. von Brecht, H. Sun, T. Kolokolnikov, D. Uminsky, Comm. Math. Sci. 13(4), 955–985 (2015)

    Article  Google Scholar 

  38. H. Berg, D. Brown, Nature 239, 500 (1972)

    Article  Google Scholar 

  39. T. Hillen, K. Hadeler, Analysis and Numerics for conservation laws (Springer, Berlin, Heidelberg, 2005), chap. Hyperbolic systems and transport equations in mathematical biology, pp. 257–279

    Google Scholar 

  40. D. Soll, D. Wessels, Motion Analysis of Living Cells (Wiley, New York, Toronto, 1998)

    Google Scholar 

  41. J. Carrillo, M. Fornasier, J. Rosado, G. Toscani, SIAM J. Math. Anal. 42, 218 (2010)

    Article  MathSciNet  Google Scholar 

  42. C. Cercignani, The Boltzmann Equation and Its Applications (Springer, 1987)

    Google Scholar 

  43. S. Harris, An Introduction to the Theory of the Boltzmann Equation (Courier Corporation, 2012)

    Google Scholar 

  44. N. Bellomo, C. Bianca, M. Delitala, Phys. Life Rev. 6, 144 (2009)

    Article  Google Scholar 

  45. D. Helbing, Complex Syst. 6, 391 (1992)

    Google Scholar 

  46. E. Geigant, K. Ladizhansky, A. Mogilner, SIAM J. Appl. Math. 59(3), 787 (1998)

    Article  Google Scholar 

  47. E. Geigant, M. Stoll, J. Math. Biol. 46, 537 (2003)

    Article  MathSciNet  Google Scholar 

  48. K. Kang, B. Perthame, A. Stevens, J. Velázquez, J. Differ. Equ. 246, 1387 (2009)

    Article  Google Scholar 

  49. T. Hillen, J. Math. Biol. 53(4), 585 (2006)

    Article  MathSciNet  Google Scholar 

  50. E. Boissard, P. Degond, S. Motsch, J. Math. Biol. 66(6), 1267 (2013)

    Article  MathSciNet  Google Scholar 

  51. L. Saint-Raymond, Hydrodynamic Limits of the Boltzmann Equation (Springer, Berlin, Heidelberg, 2009)

    Book  MATH  Google Scholar 

  52. S.Y. Ha, E. Tadmor, Kinet. Relat. Models 1(3), 415 (2008)

    Article  MathSciNet  Google Scholar 

  53. R. Eftimie, G. de Vries, M.A. Lewis, F. Lutscher, Bull. Math. Biol. 69(5), 1537 (2007)

    Article  MathSciNet  Google Scholar 

  54. R. Eftimie, G. de Vries, M.A. Lewis, Proc. Natl. Acad. Sci. USA 104(17), 6974 (2007)

    Article  MathSciNet  Google Scholar 

  55. N. Vauchelet, Kinet. Relat. Models 3(3), 501 (2010)

    Article  MathSciNet  Google Scholar 

  56. B. Perthame, Bull. Am. Math. Soc. (New Series) 41(2), 205 (2004)

    Google Scholar 

  57. N. Bournaveas, V. Calvez, S. Gutiérrez, B. Perthame, Commun. Part. Differ. Equ. 33(1), 79 (2008)

    Article  Google Scholar 

  58. M. Lachowicz, H. Leszczyński, M. Parisot, Math. Models Methods Appl. Sci. 27(6), 1153 (2017)

    Article  MathSciNet  Google Scholar 

  59. N. Bournaveas, V. Calvez, Can. Appl. Math. Q. 18(3), 253 (2010)

    MathSciNet  Google Scholar 

  60. G. Toscani, Commun. Math. Sci. 4(3), 481 (2006)

    Article  MathSciNet  Google Scholar 

  61. B. Düring, P. Markowich, J.F. Pietschmann, M.T. Wolfram, Proc. R. Soc. A 465(2112), 3687 (2009)

    Article  MathSciNet  Google Scholar 

  62. G. Naldi, L. Pareschi, G. Toscani (eds.), Mathematical Modelling of Collective Behaviour in Socio-Economic and Life Sciences (Birkhäuser, 2010)

    Google Scholar 

  63. D. Maldarella, L. Pareschi, Phys. A Stat. Mech. Appl. 391(3), 715 (2012)

    Article  Google Scholar 

  64. M. Delitala, T. Lorenzi, Kinet. Relat. Models 7, 29 (2014)

    Article  MathSciNet  Google Scholar 

  65. B. Düring, A. Jüngel, L. Trussardi, Kinet. Relat. Models 10(1), 239 (2017)

    Article  MathSciNet  Google Scholar 

  66. B. Boghosian, Phys. Rev. E 89, 042804 (2014)

    Article  Google Scholar 

  67. E. Jäger, L. Segel, SIAM J. Appl. Math. 52(5), 1442 (1992)

    Article  MathSciNet  Google Scholar 

  68. N. Bellomo, M. Delitala, Phys. Life Rev. 5, 183 (2008)

    Article  Google Scholar 

  69. R. Erban, H. Othmer, Multiscale Model. Simul. 3(2), 362 (2005)

    Article  MathSciNet  Google Scholar 

  70. N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Math. Models Methods Appl. Sci. 17, 1675 (2007)

    Article  MathSciNet  Google Scholar 

  71. M. Kolev, Int. J. Math. Comput. Sci. 13(3), 289 (2003)

    MathSciNet  Google Scholar 

  72. I. Brazzoli, E. Angelis, P.E. Jabin, Math. Models Methods Appl. Sci. 33, 733 (2010)

    Google Scholar 

  73. A. Chauviere, I. Brazzoli, Math. Comput. Model. 43, 933 (2006)

    Article  Google Scholar 

  74. N. Bellomo, N. Li, P. Maini, Math. Models Methods Appl. Sci. 18(4), 593 (2008)

    Article  MathSciNet  Google Scholar 

  75. R. Eftimie, J. Bramson, D. Earn, Bull. Math. Biol. 73(1), 2 (2011)

    Article  MathSciNet  Google Scholar 

  76. R. Magrath, B. Pitcher, J. Gardner, Behav. Ecol. 20(4), 745 (2009)

    Article  Google Scholar 

  77. E.D. Angelis, B. Lods, Math. Comput. Model. 47, 196 (2008)

    Article  Google Scholar 

  78. N. Bellomo, E.D. Angelis, L. Preziosi, J. Theor. Med. 5(2), 111 (2003)

    Article  Google Scholar 

  79. T. Lorenz, C. Surulescu, Math. Models Methods Appl. Sci. 24(12), 2383 (2014)

    Article  MathSciNet  Google Scholar 

  80. B. Piccoli, A. Tosin, Arch. Ration. Mech. Anal. 199, 707 (2011)

    Article  MathSciNet  Google Scholar 

  81. E. Cristiani, B. Piccoli, A. Tosin, Multiscale Model. Simul. 9(1), 155 (2011)

    Article  MathSciNet  Google Scholar 

  82. T. Tao, An Introduction to Measure Theory (American Mathematical Society, 2011)

    Google Scholar 

  83. S.Y. Ha, J.G. Liu, Commun. Math. Sci. 7(2), 297 (2009)

    Article  MathSciNet  Google Scholar 

  84. J. Carrillo, M. D’Orsogna, V. Panferov, Kinet. Relat. Models 2, 363 (2009)

    Article  MathSciNet  Google Scholar 

  85. Y.L. Chuang, M. D’Orsogna, D. Marthaler, A. Bertozzi, L. Chayes, Physica D 232, 33 (2007)

    Article  MathSciNet  Google Scholar 

  86. F. Bolley, J. Canizo, J. Carillo, Math. Models Methods Appl. Sci. 21, 2179 (2011)

    Article  MathSciNet  Google Scholar 

  87. F. Bolley, J. Canizo, J. Carillo, Appl. Math. Lett. 25, 339 (2012)

    Article  MathSciNet  Google Scholar 

  88. M. D’Orsogna, Y. Chuang, A. Bertozzi, L. Chayes, Phys. Rev. Lett. 96(10), 104302 (2006)

    Article  Google Scholar 

  89. J. Irving, J. Kirkwood, J. Chem. Phys. 18, 817 (1950)

    Article  MathSciNet  Google Scholar 

  90. P. Degond, S. Motsch, Math. Models Methods Appl. Sci. 20, 1459 (2008)

    Article  Google Scholar 

  91. T. Hillen, Math. Models Methods Appl. Sci. 12(7), 1 (2002)

    Article  MathSciNet  Google Scholar 

  92. P. Degond, A. Appert-Rolland, M. Moussaïd, J. Pettré, G. Theraulaz, J. Stat. Phys. 152, 1033 (2013)

    Article  MathSciNet  Google Scholar 

  93. F. Filbet, P. Laurencot, B. Perthame, J. Math. Biol. 50(2), 189 (2005)

    Article  MathSciNet  Google Scholar 

  94. L. Bonilla, J. Soler, Math. Models Methods Appl. Sci. 11, 1457 (2001)

    Article  MathSciNet  Google Scholar 

  95. N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Math. Comput. Model. 51, 441 (2010)

    Article  Google Scholar 

  96. E.D. Angelis, M. Delitala, A. Marasco, A. Romano, Math. Comput. Model. 37, 1131 (2003)

    Article  Google Scholar 

  97. N. Bellomo, B. Firmani, L. Guerri, Appl. Math. Lett. 12, 39 (1999)

    Article  MathSciNet  Google Scholar 

  98. T. Makino, B. Perthame, Jpn. J. Appl. Math. 7, 165 (1990)

    Article  Google Scholar 

  99. T. Hillen, H.G. Othmer, SIAM J. Appl. Math. 61, 751 (2000)

    Article  MathSciNet  Google Scholar 

  100. P. Degond, T. Yang, Math. Models Methods Appl. Sci. 20, 1459 (2010)

    Article  MathSciNet  Google Scholar 

  101. F. Golse, in Handbook of Differential Equations. Evolutionary Equations, Vol. 2, ed. by C. Dafermos, E. Feireisl (Elsevier B.V., 2005)

    Google Scholar 

  102. A.D. Masi, E. Presutti, Mathematical Methods for Hydrodynamic Limits (Springer, Berlin, Heidelberg, 1991)

    Book  MATH  Google Scholar 

  103. P. Degond, B. Lucquin-Descreux, Math. Model Methods Appl. Sci. 2(2), 167 (1992)

    Article  Google Scholar 

  104. L. Desvillettes, Transp. Theor. Stat. Phys. 21(3), 259 (1992)

    Article  MathSciNet  Google Scholar 

  105. S. McNamara, W. Young, Phys. Fluids A 5, 34 (1993)

    Article  MathSciNet  Google Scholar 

  106. J. Carrillo, R. Eftimie, F. Hoffmann, Kinet. Relat. Models 8(3), 413 (2015)

    Article  MathSciNet  Google Scholar 

  107. P. Degond, S. Motsch, C. R. Acad. Sci. Paris Ser. I 345, 555 (2007)

    Google Scholar 

  108. J. Meskas. A nonlocal kinetic model for predator-prey interactions in two dimensions. MSc Thesis, Simon Fraser University, Canada (2012)

    Google Scholar 

  109. R. Colombo, M. Lécureux-Mercier, J. Nonlinear Sci. 22, 39 (2012)

    Article  MathSciNet  Google Scholar 

  110. P.H. Chavanis, C. Sire, Phys. A Stat. Mech. Appl. 384, 199 (2007)

    Article  Google Scholar 

  111. P.H. Chavanis, Commun. Nonlinear. Sci. Numer. Simul. 15, 60 (2010)

    Article  MathSciNet  Google Scholar 

  112. P.H. Chavanis, Phys. A Stat. Mech. Appl. 387, 5716 (2008)

    Article  MathSciNet  Google Scholar 

  113. P.H. Chavanis, Phys. A Stat. Mech. Appl. 390(9), 1546 (2011)

    Article  Google Scholar 

  114. A. Schadschneider, D. Chowdhury, K. Nishinari, Stochastic Transport in Complex Systems. From molecules to vehicles (Elsevier, Amsterdam Oxford, 2011)

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eftimie, R. (2018). Multi-Dimensional Transport Equations. In: Hyperbolic and Kinetic Models for Self-organised Biological Aggregations. Lecture Notes in Mathematics(), vol 2232. Springer, Cham. https://doi.org/10.1007/978-3-030-02586-1_6

Download citation

Publish with us

Policies and ethics