Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2232))

  • 689 Accesses

Abstract

The first step in the investigation of transport models for aggregation and movement, is represented by the study of one-equation models. To emphasise the complexity of these models, we start with a variety of hyperbolic models for car traffic and pedestrian traffic (since the models for collective movement of pedestrians are a natural extension of the car traffic models, and moreover traffic-like aspects can be found in many biological systems). Next, we discuss models for animal movement that incorporate constant or linear velocity functions. We review also models with reaction terms describing the inflow/outflow of cars and populations. In the context of animal movement, we present in more detail an analytical investigation of the speed of travelling waves. We conclude with a very brief discussion of numerical approaches for advection equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Mickens, SIAM Rev. 30(4), 629 (1988)

    Article  MathSciNet  Google Scholar 

  2. K. Lika, T. Hallam, J. Math. Biol. 38, 346 (1999)

    Article  MathSciNet  Google Scholar 

  3. M. Lighthill, G. Whitham, Proc. R. Soc. Lond. Ser. A. 229(1178), 317 (1955)

    Article  Google Scholar 

  4. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)

    Article  Google Scholar 

  5. D. Helbing, P. Monar, I. Farkas, K. Bolay, Environ. Plann. B. Plann. Des. 28, 361 (2001)

    Article  Google Scholar 

  6. R. Borsche, A. Meurer, Discret. Contin. Dyn. Syst. Ser. S 7(3), 363 (2014)

    Article  Google Scholar 

  7. S. Göttlich, C. Harter, Netw. Heterog. Media 11(3), 447 (2016)

    Article  MathSciNet  Google Scholar 

  8. D. Helbing, F. Schweitzer, J. Keltsch, P. Molnar, Phys. Rev. E 56, 2527 (1997)

    Article  Google Scholar 

  9. I. Prigogine, R. Herman, Kinetic Theory of Vehicular Traffic (Elsevier, New York, 1971)

    MATH  Google Scholar 

  10. L. Henderson, Nature 229, 381 (1971)

    Article  Google Scholar 

  11. L. Henderson, Transp. Res. 8, 509 (1975)

    Article  Google Scholar 

  12. R. Colombo, M. Garavello, M. Lécureux-Mercier, Math. Models Methods Appl. Sci. 22(4), 1150023 (2012)

    Article  MathSciNet  Google Scholar 

  13. D. Yanagisawa, A. Kimura, R. Nishi, A. Tomoeda, K. Nishinari, Distrib. Auton. Robot. Syst. 8, 227 (2009)

    Article  Google Scholar 

  14. F. Venuti, L. Bruno, Phys. Life Rev. 6(3), 176 (2009)

    Article  Google Scholar 

  15. F. Venuti, L. Bruno, Eng. Struct. 56, 95 (2013)

    Article  Google Scholar 

  16. C. Schäfer, R. Zinke, L. Künzer, G. Hofinger, R. Koch, Transp. Res. Proc. 2, 636 (2014)

    Article  Google Scholar 

  17. A. Sieben, J. Schumann, A. Seyfried, PLoS ONE 12(6), e0177328 (2017)

    Article  Google Scholar 

  18. S. Hoogendoorn, P. Bovy, Transp. Res. Board 1710, 28 (2000)

    Article  Google Scholar 

  19. S. Hoogendoorn, P. Bovy, Proc. Inst. Mech. Eng. Pt. I J. Syst. Control Eng. 215(4), 283 (2001)

    Google Scholar 

  20. W. Jin, Transp. Res. B Methodol. 93(A), 543 (2016)

    Article  Google Scholar 

  21. R. Abeyaratne, Int. J. Mech. Eng. Educ. 42(3), 185 (2014)

    Article  Google Scholar 

  22. B. Piccoli, M. Garavello, Traffic Flow on Networks (American Institute of Mathematical Sciences, San Jose, 2006)

    MATH  Google Scholar 

  23. D. Helbing, P. Molnar, Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  24. D. Helbing, Complex Syst. 6, 391 (1992)

    Google Scholar 

  25. F. Venuti, L. Bruno, N. Bellomo, Math. Comput. Model. 45(3–4), 252 (2007)

    Article  Google Scholar 

  26. N. Bellomo, C. Dogbé, Math. Models Methods Appl. Sci. 18, 1317 (2008)

    Article  MathSciNet  Google Scholar 

  27. D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber, Math. Comput. Model. 35(5–6), 517 (2002)

    Article  Google Scholar 

  28. P. Richards, Oper. Res. 4, 42 (1956)

    Article  Google Scholar 

  29. R. Hughes, Transp. Res. B 36, 507 (2002)

    Article  Google Scholar 

  30. R. Hughes, Annu. Rev. Fluid Mech. 35, 169 (2003)

    Article  Google Scholar 

  31. R. Colombo, M. Rosini, Math. Method Appl. Sci. 28(13), 1553 (2005)

    Article  Google Scholar 

  32. D. Helbing, A. Johansson, H.Z. Al-Abideen, Phys. Rev. E 75, 046109 (2007)

    Article  Google Scholar 

  33. C. Appert-Rolland, P. Degond, S. Motch, Netw. Heterog. Media 6(3), 351 (2011)

    Article  MathSciNet  Google Scholar 

  34. G. Schütz, Exactly solvable models for many-body systems far from equilibrium, in Phase Transitions and Critical Phenomena, vol. 19 (Academic Press, London, 2001), pp. 1–251

    Google Scholar 

  35. P. Lefloch, Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves. Lectures in Mathematics. ETH Zürich (Birkhäuser, Basel, 2002)

    Google Scholar 

  36. R. Colombo, P. Goatin, M. Rosini, GAKUTO Int. Ser. Math. Sci. Appl. 32, 255 (2010)

    Google Scholar 

  37. M.D. Francesco, P. Markowich, J.F. Pietschmann, M.T. Wolfram, Math. Models Methods Appl. Sci. 250(3), 1334 (2011)

    Google Scholar 

  38. E.D. Angelis, Math. Comput. Model. 29, 83 (1999)

    Article  Google Scholar 

  39. A. Bressan, K. Han, SIAM J. Math. Anal. 43, 2384–2417 (2011)

    Article  MathSciNet  Google Scholar 

  40. G. Coclite, B. Piccoli, SIAM J. Math. Anal. 36(6), 1862 (2005)

    Article  MathSciNet  Google Scholar 

  41. A. Bressan, K. Han, Netw. Heterog. Media 8, 627 (2013)

    Article  MathSciNet  Google Scholar 

  42. M. Herty, S. Moutari, M. Rascale, Netw. Heterog. Media 1(2), 275 (2006)

    Article  MathSciNet  Google Scholar 

  43. G. Bretti, R. Natalini, B. Piccoli, Netw. Heterog. Media 1(1), 57 (2006)

    Article  MathSciNet  Google Scholar 

  44. A. Bressan, S. Canić, M. Garavello, M. Herty, B. Piccoli, EMS Surv. Math. Sci. 1, 47 (2014)

    Article  MathSciNet  Google Scholar 

  45. M. Gugat, M. Herty, A. Klar, G. Leugering, J. Optim. Theory Appl. 126(3), 589 (2005)

    Article  MathSciNet  Google Scholar 

  46. D. Helbing, Phys. Rev. E 53, 2366 (1996)

    Article  MathSciNet  Google Scholar 

  47. R. LeVeque, Numerical Methods for Conservation Laws (Birkhäuser, Basel, 1992)

    Chapter  MATH  Google Scholar 

  48. P. Ross, Transp. Res. 22(6), 421 (1988)

    Article  Google Scholar 

  49. W. Phillips, Transp. Plan. Technol. 5(3), 131 (1979)

    Article  Google Scholar 

  50. M. Flynn, A. Kasimov, J.C. Nave, R. Rosales, B. Seibold, Phys. Rev. E 79(5), 056113 (2009)

    Article  MathSciNet  Google Scholar 

  51. R. Kühne, M. Rödiger, Proceedings of the 1991 Winter Simulation Conference (1991), pp. 762–770

    Google Scholar 

  52. W. Jin, H. Zhang, Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation. Technical report, University of California, Davis, 2001

    Google Scholar 

  53. A. Delis, I. Nikolos, M. Papageorgiou, Transp. Res. C.: Emerg. Technol. 44, 318 (2014)

    Article  Google Scholar 

  54. H. Payne, Mathematical Models of Public Systems, vol. 28 (Simulation Council, La Jolla, 1971), pp. 51–61

    Google Scholar 

  55. C. Daganzo, Transp. Res. B 28, 35 (1995)

    Google Scholar 

  56. A. Aw, M. Rascale, SIAM J. Appl. Math. 60, 916 (2000)

    Article  MathSciNet  Google Scholar 

  57. B. Kerner, Math. Comput. Model. 35, 481–508 (2002)

    Article  Google Scholar 

  58. R. Colombo, P. Goatin, Flow Turbul. Combust. 76(4), 383 (2006)

    Article  Google Scholar 

  59. F. Navin, R. Wheeler, Traffic Eng. 39, 31 (1969)

    Google Scholar 

  60. L. Vanumu, K. Rao, G. Tiwari, Eur. Transp. Res. Rev. 9, 49 (2017)

    Article  Google Scholar 

  61. R. Colombo, SIAM J. Appl. Math. 63, 708 (2003)

    Article  Google Scholar 

  62. B.S. Kerner, P. Konhäuser, Phys. Rev. E 50, 54 (1994)

    Article  Google Scholar 

  63. B. Kerner, Phys. A: Stat. Mech. Appl. 333, 379 (2004)

    Article  Google Scholar 

  64. B. Kerner, arXiv prerint cond-mat/0309018 (2003)

    Google Scholar 

  65. A. Seyfried, B. Steffen, W. Klingsch, M. Boltes, J. Stat. Mech. 2005(10), P10002 (2005)

    Article  Google Scholar 

  66. V. Predtechenskii, A. Milinskii, Planning for Foot Traffic Flow in Buildings (Amerind Publishing, New Delhi, 1978). Translation of: Proekttirovanie Zhdanii s Uchetom Organizatsii Dvizheniya Lyuddskikh Potokov. Stroiizdat Publishers, Moscow

    Google Scholar 

  67. B. Piccoli, K. Han, T. Friesz, T. Yao, J. Tang, Transp. Res. C 52, 32 (2015)

    Article  Google Scholar 

  68. R. Colombo, P. Goatin, B. Piccoli, J. Hyperbolic Differ. Equ. 7(1), 85 (2010)

    Article  MathSciNet  Google Scholar 

  69. M. Garavello, B. Piccoli, Netw. Heterog. Media 4(1), 107 (2009)

    Article  MathSciNet  Google Scholar 

  70. S. Blandin, P. Goatin, B. Piccoli, A. Bayen, D. Work, Proc. Soc. Behav. Sci. 54, 302 (2012)

    Article  Google Scholar 

  71. S. Blandin, D. Work, P. Goatin, B. Piccoli, A. Bayen, SIAM J. Appl. Math. 71(1), 107 (2011)

    Article  MathSciNet  Google Scholar 

  72. P. Goatin, Math. Comput. Model. 44(3–4), 287 (2006)

    Article  Google Scholar 

  73. D. Helbing, Phys. A 219, 375 (1995)

    Article  Google Scholar 

  74. D. Helbing, in A Perspective Look at Nonlinear Media, ed. by J. Parisi, S. Müller, W. Zimmermann. Lecture Notes in Physics, vol. 503 (Springer, Berlin, 1998), pp. 122–139

    Google Scholar 

  75. M. Schönhof, D. Helbing, Transp. Sci. 41(2), 135 (2007)

    Article  Google Scholar 

  76. P. Bagnerini, R. Colombo, A. Corli, Math. Comput. Model. 44(9–10), 917 (2006)

    Article  Google Scholar 

  77. J.P. Lebacque, J.B. Lesort, Proceedings of the 14th International Symposium on Transportation and Traffic Theory, Jerusalem (1999)

    Google Scholar 

  78. J.B. Lesort, E. Bourrel, V. Henn, Proceedings of Traffic and Granular Flow?03, Delft (2003), pp. 125–139

    Google Scholar 

  79. T. Li, Phys. D: Nonlinear Phenom. 207(1–2), 41 (2005)

    Article  Google Scholar 

  80. H. Yeo, A. Skabardonis, Proceedings of the 18th International Symposium on Transportation and Traffic Theory, Hong-Kong (2009), pp. 99–115

    Google Scholar 

  81. K. Hadeler, Reaction transport systems in biological modelling, in Mathematics Inspired by Biology. Lecture Notes in Mathematics (Springer, Berlin, 1999), pp. 95–150

    Google Scholar 

  82. A. Kolmogorov, I. Petrovsky, N. Piscounov, Mosc. Univ. Bull. Math. 1, 1 (1937)

    Google Scholar 

  83. K. Fellner, G. Raoul, Math. Models Methods Appl. Sci. 20, 2267 (2010)

    Article  MathSciNet  Google Scholar 

  84. A. McKendrick, Proc. Edinb. Math. Soc. 44, 98 (1926)

    Article  Google Scholar 

  85. H.V. Foerster, The Kinetics of Cell Proliferation (Grune and Stratton, New York, 1959), pp. 382–407

    Google Scholar 

  86. G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics (Marcel Dekker, New York, 1985)

    MATH  Google Scholar 

  87. B. Keyfitz, N. Keyfitz, Math. Comput. Model. 26(6), 1–9 (1997)

    Article  MathSciNet  Google Scholar 

  88. J.D. Murray, Mathematical Biology (Springer, New York, 1989)

    Book  MATH  Google Scholar 

  89. A. Volpert, V. Volpert, V. Volpert, Travelling Wave Solutions of Parabolic Systems (American Mathematical Society, Providence, 2000)

    MATH  Google Scholar 

  90. V. Volpert, S. Petrovskii, Phys. Life Rev. 6, 267 (2009)

    Article  Google Scholar 

  91. P. Fife, J. Diff. Equ. 40, 168 (1981)

    Article  Google Scholar 

  92. P. Fife, J. McLeod, Arch. Ration. Mech. Anal. 65(4), 335 (1977)

    Article  MathSciNet  Google Scholar 

  93. A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem (Oxford University Press, Oxford, 2000)

    Google Scholar 

  94. R. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  95. G. Bretti, R. Natalini, B. Piccoli, J. Comput. Appl. Math. 210, 71 (2007)

    Article  MathSciNet  Google Scholar 

  96. R. Borsche, J. Kall, J. Comput. Phys. 327, 678 (2016)

    Article  MathSciNet  Google Scholar 

  97. Y. Shi, Y. Guo, Appl. Numer. Math. 108, 21 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eftimie, R. (2018). One-Equation Local Hyperbolic Models. In: Hyperbolic and Kinetic Models for Self-organised Biological Aggregations. Lecture Notes in Mathematics(), vol 2232. Springer, Cham. https://doi.org/10.1007/978-3-030-02586-1_3

Download citation

Publish with us

Policies and ethics