Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2232))

  • 698 Accesses

Abstract

The modelling and investigation of self-organised biological aggregations is a research area that has undergone rapid expansion over the past years. Self-organised aggregations are found in swarms of insects, schools of fish, flocks of birds, mammal herds, bacteria and even human crowds. The complex spatial and spatial-temporal patterns exhibited by these aggregations, from milling schools of fish and zigzagging flocks of birds, to rippling waves in Myxobacteria colonies, have been the starting point of the research in this area. Various types of mathematical models have been derived to reproduce the observed patterns, and to propose hypotheses about the mathematical and biological mechanisms behind these patterns. Some of these models explicitly include various local and nonlocal communication mechanisms. In this Chapter, we present an overview the research area (while briefly mentioning a few individual-based models that are related to the models which will be discussed throughout the rest of the book), emphasise the reason for our approach on focusing only on two specific classes of models (hyperbolic and kinetic), and summarise the patterns that we will discuss throughout the rest of the chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.K. Parrish, L.E. Keshet, Science 284, 99 (1999)

    Article  Google Scholar 

  2. T. Deisboeck, M. Berens, A. Kansal, S. Torquato, Cell Prolif. 34, 115 (2001)

    Article  Google Scholar 

  3. D. Chowdhury, A. Schadschneider, N. Katsuhiro, Phys. Life Rev. 2(4), 318 (2005)

    Article  Google Scholar 

  4. K. Tunstrøm, Y. Katz, C. Ioannou, C. Huepe, M. Lutz, PLoS Comput. Biol. 9, e1002915 (2013)

    Article  Google Scholar 

  5. H. Weimerskirch, F. Bonadonna, F. Bailleul, G. Mabille, G. Dell’Omo, H.P. Lipp, Science 295, 1259 (2002)

    Article  Google Scholar 

  6. M. Muramatsu, T. Nagatani, Phys. A Stat. Mech. Appl. 275(1–2), 281 (2000)

    Article  Google Scholar 

  7. V. Fourcassié, A. Dussutour, J.L. Deneubourg, J. Exp. Biol. 213, 2357 (2010)

    Article  Google Scholar 

  8. O.A. Igoshin, R. Welch, D. Kaiser, G. Oster, Proc. Natl. Acad. Sci. USA 101, 4256 (2004)

    Article  Google Scholar 

  9. S.J. Simpson, A.R. McCaffery, B.F. Hägele, Biol. Rev. 74, 461 (1999)

    Article  Google Scholar 

  10. J.K. Parrish, Environ. Biol. Fish. 55, 157 (1999)

    Article  Google Scholar 

  11. J. Pauls, Fire Technol. 20, 27 (1984)

    Article  Google Scholar 

  12. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)

    Article  Google Scholar 

  13. D. Helbing, L. Buzna, A. Johansson, T. Wener, Transp. Sci. 39(1), 1 (2005)

    Article  Google Scholar 

  14. N. Shiwakoti, M. Sarvi, Transp. Res. C Emerg. Technol. 37, 260 (2013)

    Article  Google Scholar 

  15. P. Friedl, Y. Hegerfeldt, M. Tusch, Int. J. Dev. Biol. 48, 441 (2004)

    Article  Google Scholar 

  16. P. Røth, Ann. Rev. Cell Dev. Biol. 25, 407 (2009)

    Article  Google Scholar 

  17. P. Maini, H. Othmer (eds.), Mathematical Models for Biological Pattern Formation (Springer, Berlin, 2001)

    MATH  Google Scholar 

  18. L. Edelstein-Keshet, Mathematical Models in Biology (SIAM, Philadelphia, 2005)

    Book  MATH  Google Scholar 

  19. J.D. Murray, Mathematical Biology (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  20. V. Capasso, M. Gromov, A. Hareol-Bellan, N. Morozova, L.L. Pritchard (eds.), Pattern Formation in Morphogenesis (Springer, Berlin, 2013)

    MATH  Google Scholar 

  21. C. Guven, E. Rericha, E. Ott, W. Losert, PLoS Comput. Biol. 9(5), e1003041 (2013)

    Article  Google Scholar 

  22. D. Cohen, L. Martignetti, S. Robine, E. Barillot, A. Zinovyev, L. Calzone, PLoS Comput. Biol. 11(11), e1004571 (2015)

    Article  Google Scholar 

  23. S. Chapman, M. Plank, A. James, B. Base, ANZIAM J. 49(2), 151 (2007)

    Article  MathSciNet  Google Scholar 

  24. N. Bellomo, M. Delitala, Phys. Life Rev. 5, 183 (2008)

    Article  Google Scholar 

  25. C. Engwer, T. Hillen, M. Knappitsch, C. Surulescu, J. Math. Biol. 71, 551 (2015)

    Article  MathSciNet  Google Scholar 

  26. I.D. Couzin, J. Krause, R. James, G. Ruxton, N.R. Franks, J. Theor. Biol. 218, 1 (2002)

    Article  Google Scholar 

  27. K. Warburton, J. Lazarus, J. Theor. Biol. 150, 473 (1991)

    Article  Google Scholar 

  28. T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75(6), 1226 (1995)

    Article  MathSciNet  Google Scholar 

  29. A. Huth, C. Wissel, J. Theor. Biol. 156, 365 (1992)

    Article  Google Scholar 

  30. J. Tien, S. levin, D. Rubenstein, Evol. Ecol. 6, 555 (2004)

    Google Scholar 

  31. R. Lukeman, Y.X. Li, L. Edelstein-Keshet, Proc. Natl. Acad. Sci. 107(28), 12576 (2010)

    Article  Google Scholar 

  32. U. Börner, A. Deutsch, M. Bär, Phys. Biol. 3, 138 (2006)

    Article  Google Scholar 

  33. M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale, V. Zdravkovic, Proc. Natl. Acad. Sci. USA 105(5), 1232 (2008)

    Article  Google Scholar 

  34. R. Eftimie, G. de Vries, M. Lewis, J. Math. Biol. 59, 37 (2009)

    Article  MathSciNet  Google Scholar 

  35. D. Trucu, P. Lin, M. Chaplain, Y. Wang, Multiscale Model Simul. 11(1), 309 (2013)

    Article  MathSciNet  Google Scholar 

  36. P. Domschke, D. Trucu, A. Gerisch, M. Chaplain, J. Theor. Biol. 361, 41 (2014)

    Article  Google Scholar 

  37. K. Fellner, G. Raoul, Math. Models Methods Appl. Sci. 20, 2267 (2010)

    Article  MathSciNet  Google Scholar 

  38. P. Degond, S. Motsch, Math. Models Methods Appl. Sci. 20, 1459 (2008)

    Article  Google Scholar 

  39. K. Fellner, G. Raoul, Math. Comput. Model. 53, 1436 (2011)

    Article  Google Scholar 

  40. R. Fetecau, Math. Models Methods Appl. Sci. 21(7), 1539 (2011)

    Article  MathSciNet  Google Scholar 

  41. P. Degond, A. Frouvelle, J.G. Liu, J. Nonlinear Sci. 23, 427 (2013)

    Article  MathSciNet  Google Scholar 

  42. J. von Brecht, D. Uminsky, T. Kolokolnikov, A. Bertozzi, Math. Models Methods Appl. Sci. 22(1), 1140002 (2012)

    Article  MathSciNet  Google Scholar 

  43. J. Carrillo, M. Fornasier, J. Rosado, G. Toscani, SIAM J. Math. Anal. 42, 218 (2010)

    Article  MathSciNet  Google Scholar 

  44. J. Carrillo, M. D’Orsogna, V. Panferov, Kinet. Relat. Models 2, 363 (2009)

    Article  MathSciNet  Google Scholar 

  45. H. Reuter, B. Breckling, Ecol. Model. 75–76, 147 (1994)

    Article  Google Scholar 

  46. C.W. Reynolds, Comput. Graph. 21, 25 (1987)

    Article  Google Scholar 

  47. R. Vabø, L. Nøttestad, Fish. Oceanogr. 6, 155 (1997)

    Article  Google Scholar 

  48. U. Börner, A. Deutsch, H. Reichenbach, M. Bär, Phys. Rev. Lett. 89, 078101 (2002)

    Article  Google Scholar 

  49. J. Buhl, D.J.T. Sumpter, I.D. Couzin, J.J. Hale, E. Despland, E.R. Miller, S.J. Simpson, Science 312, 1402 (2006)

    Google Scholar 

  50. H. Chaté, F. Ginelli, G. Grégoire, Phys. Rev. Lett. 99, 229601 (2007)

    Article  Google Scholar 

  51. Y.L. Chuang, M. D’Orsogna, D. Marthaler, A. Bertozzi, L. Chayes, Phys. D 232, 33 (2007)

    Article  MathSciNet  Google Scholar 

  52. I.D. Couzin, J. Krause, Adv. Study Behav. 32, 1 (2003)

    Article  Google Scholar 

  53. F. Cucker, S. Smale, IEEE Trans. Autom. Control 52(5), 852 (2007)

    Article  Google Scholar 

  54. A. Czirók, A.L. Barabási, T. Vicsek, Phys. Rev. Lett. 82(1), 209 (1999)

    Article  Google Scholar 

  55. V. Gazi, K.M. Passino, Proceedings of the American Control Conference, Anchorage, AK (2002), pp. 8–10

    Google Scholar 

  56. G. Grégoire, H. Chaté, Phys. Rev. Lett. 92(2), 025702 (2004)

    Article  Google Scholar 

  57. S. Gueron, S.A. Levin, D.I. Rubenstein, J. Theor. Biol. 182, 85 (1996)

    Article  Google Scholar 

  58. C.K. Hemelrijk, H. Kunz, Behav. Ecol. 16(1), 178 (2004)

    Article  Google Scholar 

  59. D. Stichel, A. Middleton, B. Müller, U. Klingmüller, K. Breuhahn, F. Matthäus, NPJ Syst. Biol. Appl. 3, 5 (2017)

    Article  Google Scholar 

  60. M. D’Orsogna, Y. Chuang, A. Bertozzi, L. Chayes, Phys. Rev. Lett. 96(10), 104302 (2006)

    Article  Google Scholar 

  61. T. Vicsek, A. Zafeiris, Phys. Rep. 517(3–4), 71 (2010)

    Google Scholar 

  62. A. Lesne, M. Laguës (eds.), Scale Invariance: From Phase Transitions to Turbulence (Springer, Berlin, 2012)

    MATH  Google Scholar 

  63. S.Y. Ha, K. Lee, D. Levy, Commun. Math. Sci. 7(2), 453 (2009)

    Article  MathSciNet  Google Scholar 

  64. J. Haskovec, Phys. D 261, 42 (2013)

    Article  MathSciNet  Google Scholar 

  65. P.H. Chavanis, C. Sire, Phys. A Stat. Mech. Appl. 384, 199 (2007)

    Article  Google Scholar 

  66. P.H. Chavanis, Phys. A Stat. Mech. Appl. 390(9), 1546 (2011)

    Article  Google Scholar 

  67. C. Zmurchok, G. de Vries, PLoS One 13(6), e0198550 (2018)

    Article  Google Scholar 

  68. R. Eftimie, G. de Vries, M.A. Lewis, F. Lutscher, Bull. Math. Biol. 69(5), 1537 (2007)

    Article  MathSciNet  Google Scholar 

  69. R. Eftimie, G. de Vries, M.A. Lewis, Proc. Natl. Acad. Sci. USA 104(17), 6974 (2007)

    Article  MathSciNet  Google Scholar 

  70. S. Moon, B. Nabet, N. Leonard, S. Levin, I. Kevrekidis, J. Theor. Biol. 246, 100 (2007)

    Article  Google Scholar 

  71. D. Garcia, L. Brunnet, S.D. Monte, PLoS Comput. Biol. 10(2), e1003482 (2014)

    Article  Google Scholar 

  72. M. Pineda, R. Eftimie, Phys. Biol. 14, 066003 (2017)

    Article  Google Scholar 

  73. E.E. Holmes, Am. Nat. 142, 779 (1993)

    Article  Google Scholar 

  74. T. Hillen, J. Math. Biol. 35, 49 (1996)

    Article  MathSciNet  Google Scholar 

  75. R. Eftimie, J. Math. Biol. 65(1), 35 (2012)

    Article  MathSciNet  Google Scholar 

  76. A. Chertock, A. Kurganov, A. Polizzi, I. Timofeyev, Math. Models Methods Appl. Sci. 81, 1947 (2003)

    Google Scholar 

  77. C. Carmona-Fontaine, E. Theveneau, A. Tzekou, M. Tada, M. Woods, K. Page, M. Parsons, J. Lambris, R. Mayor, Dev. Cell 21, 1026 (2011)

    Article  Google Scholar 

  78. P. Degond, C. Appert-Rolland, M. Moussaïd, J. Pettré, G. Theraulaz, J. Stat. Phys. 152, 1033 (2013)

    Article  MathSciNet  Google Scholar 

  79. J. Skellam, Biometrika 38(1–2), 196 (1951)

    Article  MathSciNet  Google Scholar 

  80. E. Keller, L. Segel, J. Theor. Biol. 26, 399 (1970)

    Article  Google Scholar 

  81. M. Burger, V. Capasso, D. Morale, Nonlinear Anal. Real World Appl. 8, 939 (2007)

    Article  MathSciNet  Google Scholar 

  82. L. Edelstein-Keshet, J. Watmough, D. Grünbaum, J. Math. Biol. 36(6), 515 (1998)

    Article  MathSciNet  Google Scholar 

  83. A. Mogilner, L. Edelstein-Keshet, J. Math. Biol. 38, 534 (1999)

    Article  MathSciNet  Google Scholar 

  84. A. Mogilner, L. Edelstein-Keshet, J. Math. Biol. 33, 619 (1995)

    Article  MathSciNet  Google Scholar 

  85. M.A. Lewis, Theor. Popul. Biol. 45, 277 (1994)

    Article  Google Scholar 

  86. D. Grünbaum, J. Math. Biol. 38, 169 (1999)

    Article  MathSciNet  Google Scholar 

  87. H.G. Othmer, S.R. Dunbar, W. Alt, J. Math. Biol. 26, 263 (1988)

    Article  MathSciNet  Google Scholar 

  88. N. Bellomo, B. Lods, R. Revelli, L. Ridolfi, Generalised Collocation Methods: Solutions to Nonlinear Problems (Birkhäuser, Boston, 2008)

    Book  MATH  Google Scholar 

  89. S. Goldstein, Quart. J. Mech. Appl. Math. 4, 129 (1951)

    Article  MathSciNet  Google Scholar 

  90. F. Lutscher, A. Stevens, J. Nonlinear Sci. 12, 619 (2002)

    Article  MathSciNet  Google Scholar 

  91. N. Bellomo, A. Bellouquid, J. Nieto, J. Soler, Math. Mod. Meth. Appl. Sci. 17, 1675 (2007)

    Article  Google Scholar 

  92. F. Filbet, P. Laurencot, B. Perthame, J. Math. Biol. 50(2), 189 (2005)

    Article  MathSciNet  Google Scholar 

  93. T. Hillen, Math. Models Methods Appl. Sci. 12(7), 1 (2002)

    Article  MathSciNet  Google Scholar 

  94. D. Helbing, Complex Syst. 6, 391 (1992)

    Google Scholar 

  95. T. Yang, J.S. Park, Y. Choi, W. Choi, T.W. Ko, K. Lee, PLoS One 6(6), e20255 (2011)

    Article  Google Scholar 

  96. J. Killeen, H. Thurfjell, S. Ciuti, D. Paton, M. Musiani, M. Boyce, Mov Ecol. 2(1), 15 (2014)

    Article  Google Scholar 

  97. R. Grima, Curr. Top. Dev. Biol. 81, 435 (2008)

    Article  Google Scholar 

  98. P.H. Chavanis, Commun. Nonlinear. Sci. Numer. Simul. 15, 60 (2010)

    Article  MathSciNet  Google Scholar 

  99. J. Fozard, H. Byrne, O. Jensen, J. King, Math. Med. Biol. 27, 39 (2010)

    Article  MathSciNet  Google Scholar 

  100. H. Levine, W.J. Rappel, I. Cohen, Phys. Rev. E 63, 017101 (2000)

    Article  Google Scholar 

  101. F. Lutscher, Eur. J. Appl. Math. 14, 291 (2003)

    Article  MathSciNet  Google Scholar 

  102. T. Hillen, A. Stevens, Nonlinear Anal. Real World Appl. 1, 409 (2000)

    Article  MathSciNet  Google Scholar 

  103. B. Pfistner, in Biological Motion, ed. by W. Alt, G. Hoffmann. Lecture Notes on Biomathematics, vol. 89 (Springer, Berlin, 1990), pp. 556–563

    Google Scholar 

  104. R. Fetecau, R. Eftimie, J. Math. Biol. 61(4), 545 (2010)

    Article  MathSciNet  Google Scholar 

  105. M. Lécureux-Mercier, ESAIM: Proc. 38, 409 (2012)

    Article  Google Scholar 

  106. E. Boissard, P. Degond, S. Motsch, J. Math. Biol. 66(6), 1267 (2013)

    Article  MathSciNet  Google Scholar 

  107. R. Eftimie, Modelling group formation and activity patterns in self-organising communities of organisms. Ph.D. Thesis, University of Alberta, 2008

    Google Scholar 

  108. R. Mickens, SIAM Rev. 30(4), 629 (1988)

    Article  MathSciNet  Google Scholar 

  109. K. Hadeler, Reaction transport systems in biological modelling, in Mathematics Inspired by Biology. Lecture Notes in Mathematics (Springer, Berlin, 1999), pp. 95–150

    Google Scholar 

  110. K. Hadeler, Nonlinear propagation in reaction transport systems, in Differential Equations with Applications to Biology (Fields Institute Communications, American Mathematical Society, Providence, 1998), pp. 251–257

    Google Scholar 

  111. K. Hadeler, Math. Comput. Model. 31(4–5), 75 (2000)

    Article  Google Scholar 

  112. H. Schwetlick, Ann. Inst. Henri Poincare 17(4), 523 (2000)

    Article  MathSciNet  Google Scholar 

  113. K. Lika, T. Hallam, J. Math. Biol. 38, 346 (1999)

    Article  MathSciNet  Google Scholar 

  114. K. Hadeler, Proc. Edinburgh Math. Soc. 31, 89 (1988)

    Article  MathSciNet  Google Scholar 

  115. T. Hillen, K. Hadeler, Hyperbolic systems and transport equations in mathematical biology, in Analysis and Numerics for Conservation Laws (Springer, Berlin, 2005), pp. 257–279

    Book  MATH  Google Scholar 

  116. B. Perthame, Appl. Math. 49(6), 539 (2004)

    Article  MathSciNet  Google Scholar 

  117. M. Lighthill, G. Whitham, Proc. R. Soc. Lond. Ser. A 229(1178), 317 (1955)

    Article  Google Scholar 

  118. M. Rosini, Macroscopic Models for Vehicular Flows and Crowd Dynamics: Theory and Applications (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

  119. F. Venuti, L. Bruno, N. Bellomo, Math. Comput. Model. 45(3–4), 252 (2007)

    Article  Google Scholar 

  120. D. Helbing, P. Monar, I. Farkas, K. Bolay, Environ. Plann. B Plann. Des. 28, 361 (2001)

    Article  Google Scholar 

  121. D. Helbing, A. Johansson, Encycl. J. Syst. Sci. Complex 16, 6476 (2010)

    Google Scholar 

  122. D. Helbing, I. Farkás, P. Molnár, T. Vicsek, in Pedestrian and Evacuation Dynamics, ed. by M. Schreckenberg, S. Sharma (Springer, Berlin, 2002), pp. 21–58

    Google Scholar 

  123. P. Torrens, Ann. Assoc. Am. Geograph. 102(1), 35 (2012)

    Article  Google Scholar 

  124. A. Sieben, J. Schumann, A. Seyfried, PLoS One 12(6), e0177328 (2017)

    Article  Google Scholar 

  125. G. Naldi, L. Pareschi, G. Toscani (eds.), Mathematical Modelling of Collective Behaviour in Socio-Economic and Life Sciences (Birkhäuser, Basel, 2010)

    MATH  Google Scholar 

  126. G. Marsan, N. Bellomo, A. Tosin, Complex Systems and Society. Modelling and Simulation (Springer, Berlin, 2103)

    Google Scholar 

  127. B. Chakrabarti, A. Chakraborti, S. Chakravarty, A. Chatterjee, Econophysics of Income and Wealth Distributions (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  128. C. Cercignani, E. Gabetta (eds.), Transport Phenomena and Kinetic Theory. Applications to Gases, Semiconductors, Photons, and Biological Systems (Birkhäuser, Boston, 2007)

    MATH  Google Scholar 

  129. A. Frouvelle, Math. Models Methods Appl. Sci. 22, 1250011 (2012)

    Article  MathSciNet  Google Scholar 

  130. C. Appert-Rolland, P. Degond, S. Motch, Netw. Heterog. Media 6(3), 351 (2011)

    Article  MathSciNet  Google Scholar 

  131. A. Frouvelle, J.G. Liu, SIAM. J. Math. Anal. 44(2), 791 (2012)

    Article  MathSciNet  Google Scholar 

  132. M. Colangeli, From Kinetic Models to Hydrodynamics. Some Novel Results (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

  133. L. Pareschi, G. Russo, G. Toscani, Modelling and Numerics of Kinetic Dissipative Systems (Nova Science Publishers, New York, 2006)

    MATH  Google Scholar 

  134. L. Pareschi, G. Toscani, Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods (Oxford University Press, Oxford, 2014)

    MATH  Google Scholar 

  135. H.G. Othmer, T. Hillen, SIAM J. Appl. Math. 62, 1222 (2002)

    Article  MathSciNet  Google Scholar 

  136. T. Hillen, H.G. Othmer, SIAM J. Appl. Math. 61, 751 (2000)

    Article  MathSciNet  Google Scholar 

  137. T. Hillen, Canad. Appl. Math. Quart. (CAMQ) 18(1), 1 (2010)

    Google Scholar 

  138. A. Bertozzi, T. Laurent, F. Leger, Math. Models Methods Appl. Sci. 22(1), 183 (2012)

    Google Scholar 

  139. Y. Huang, A. Bertozzi, Discret. Continuous Dyn. Syst. Ser. B 17, 1309 (2012)

    Article  Google Scholar 

  140. D. Helbing, A. Hennecke, V. Shvetsov, M. Treiber, Math. Comput. Model. 35(5–6), 517 (2002)

    Article  Google Scholar 

  141. D. Helbing, M. Treiber, A. Kesting, M. Schönhof, Eur. Phys. J. B 69(4), 583 (2009)

    Article  Google Scholar 

  142. N. Bellomo, N. Li, P. Maini, Math. Models Methods Appl. Sci. 18(4), 593 (2008)

    Article  MathSciNet  Google Scholar 

  143. N. Bellomo, G. Forni, Curr. Top. Dev. Biol. 81, 485 (2008)

    Article  Google Scholar 

  144. J. Laval, C. Daganzo, Transp. Res. B Methodol. 40(3), 251 (2006)

    Article  Google Scholar 

  145. S. Motsch, D. Peurichard, J. Math. Biol. 76, 205 (2018)

    Article  MathSciNet  Google Scholar 

  146. P. Degond, L. Pareschi, G. Russo (eds.), Modelling and Computational Methods for Kinetic Equations (Springer Science + Business Media, New York, 2004)

    Google Scholar 

  147. V. Vedenyain, A. Sinitsyn, E. Dulov, Kinetic Boltzmann, Vlasov and Related Equations (Elsevier, Amsterdam, 2011)

    MATH  Google Scholar 

  148. L. Arlotti, N. Bellomo, E. de Angelis, M. Lachowicz (eds.), Generalized Kinetic Models in Applied Sciences (World Scientific, Singapore, 2003)

    MATH  Google Scholar 

  149. A. Bressan, Lecture Notes on Functional Analysis. With Applications to Linear Partial Differential Equations (American Mathematical Society, Providence, 2013)

    Google Scholar 

  150. A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem (Oxford University Press, Oxford, 2000)

    Google Scholar 

  151. A. Bressan, D. Serre, M. Williams, K. Zumbrun, Hyperbolic Systems of Balance Laws (Springer, Berlin, 2007)

    Google Scholar 

  152. C. Cercignani, The Boltzmann Equation and Its Applications (Springer, Berlin, 1987)

    MATH  Google Scholar 

  153. N. Bellomo (ed.), Lecture Notes on the Mathematical Theory of Boltzmann Equation (World Scientific, Singapore, 1995)

    MATH  Google Scholar 

  154. Y. Sone, Kinetic Theory and Fluid Dynamics (Birkhäuser, Boston, 2002)

    Book  MATH  Google Scholar 

  155. V. Aristov, Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows (Springer, Berlin, 2001)

    Book  MATH  Google Scholar 

  156. R. LeVeque, Numerical Methods for Conservation Laws (Birkhäuser, Basel, 1992)

    Chapter  MATH  Google Scholar 

  157. P. Degond, L. Pareschi, G. Russo (eds.), Modelling and Computational Methods for Kinetic Equations (Birkhäuser, Boston, 2004)

    Google Scholar 

  158. F. Filbet, T. Rey, SIAM J. Sci. Comput. 37(3), A1218 (2015)

    Article  Google Scholar 

  159. S. Cordier, T. Goudon, M. Gutnic, E. Sonnendrücker (eds.), Numerical Methods for Hyperbolic and Kinetic Problems (European Mathematical Society, Zürich, 2005)

    Google Scholar 

  160. C.W. Shu, in High-Order Methods for Computational Physics, ed. by T. Barth, H. Deconinck, vol. 9 (Springer, Berlin, 1999), pp. 439–582

    Google Scholar 

  161. M. Haragus, G. Iooss, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems (Springer, Berlin, 2010)

    MATH  Google Scholar 

  162. M. Golubitsky, I. Stewart, D.G. Schaeffer, Singularities and Groups in Bifurcation Theory. Volume II (Springer, New York, 1988)

    Google Scholar 

  163. M. Golubitsky, I. Stewart, The Symmetry Perspective: From Equilibrium to Chaos in Phase Space and Physical Space (Birkhäuser, Basel, 2002)

    Google Scholar 

  164. R. Hoyle, Pattern Formation. An Introduction to Methods (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  165. N. Bellomo, E.D. Angelis, L. Preziosi, J. Theor. Med. 5(2), 111 (2003)

    Article  Google Scholar 

  166. E. Codling, M. Plank, S. Benhamou, J. R. Soc. Interface 5(25), 813 (2008)

    Article  Google Scholar 

  167. B. Piccoli, M. Garavello, Traffic Flow on Networks (American Institute of Mathematical Sciences, Springfield, 2006)

    Google Scholar 

  168. N. Bellomo, C. Dogbé, SIAM Rev. 53, 409 (2011)

    Article  MathSciNet  Google Scholar 

  169. B. Kerner, Introduction to Modern Traffic Flow Theory and Control (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

  170. M. Treiber, A. Kesting, Traffic Flow Dynamics (Springer, Berlin, 2013)

    Book  MATH  Google Scholar 

  171. I. Prigogine, R. Herman, Kinetic Theory of Vehicular Traffic (Elsevier, New York, 1971)

    MATH  Google Scholar 

  172. A. Bellouquid, M. Delitala, Mathematical Modelling of Complex Biological Systems. A Kinetic Theory Approach (Birkhäuser, Boston, 2006)

    Google Scholar 

  173. Y. Kuznetsov, Elements of Applied Bifurcation Theory, 2nd edn. (Springer, Berlin, 2000)

    Google Scholar 

  174. E. Geigant, K. Ladizhansky, A. Mogilner, SIAM J. Appl. Math. 59(3), 787 (1998)

    Article  Google Scholar 

  175. P.L. Buono, R. Eftimie, Math. Models Methods Appl. Sci. 24(2), 327–357 (2014)

    Article  MathSciNet  Google Scholar 

  176. R. Eftimie, Math. Model Nat. Phenom. 8(6), 5 (2013)

    Article  MathSciNet  Google Scholar 

  177. A. Leverentz, C. Topaz, A. Bernoff, SIAM J. Appl. Dyn. Syst. 8(3), 880 (2009)

    Article  MathSciNet  Google Scholar 

  178. N. Vauchelet, Kinet. Relat. Models 3(3), 501 (2010)

    Article  MathSciNet  Google Scholar 

  179. H. Hasimoto, Proc. Jpn. Acad. Ser. A Math. Sci. 50, 623 (1974)

    Google Scholar 

  180. T. Hillen, H. Levine, Z. Angew. Math. Phys. 54, 1 (2003)

    Google Scholar 

  181. R. Eftimie, J. Theor. Biol. 337, 42 (2013)

    Article  MathSciNet  Google Scholar 

  182. C.M. Topaz, A.L. Bertozzi, SIAM J. Appl. Math. 65, 152 (2004)

    Article  MathSciNet  Google Scholar 

  183. A. Bressan, Hyperbolic Conservation Laws: An Illustrated Tutorial (Springer, Berlin, 2013), pp. 157–245

    Google Scholar 

  184. R. Colombo, M. Garavello, M. Lécureux-Mercier, Math. Models Methods Appl. Sci. 22(4), 1150023 (2012)

    Article  MathSciNet  Google Scholar 

  185. F. Golse, in Handbook of Differential Equations. Evolutionary Equations, ed. by C. Dafermos, E. Feireisl, vol. 2 (Elsevier B.V., Amsterdam, 2005)

    Google Scholar 

  186. S.Y. Ha, E. Tadmor, Kinet. Rel. Models 1(3), 415 (2008)

    Article  Google Scholar 

  187. S. Harris, An Introduction to the Theory of the Boltzmann Equation (Courier Corporation, Chelmsford, 2012)

    Google Scholar 

  188. B. Lapeyre, E. Pardoux, R. Sentis, Introduction to Monte-Carlo Methods for Transport and Diffusion Equations (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  189. A. Schadschneider, D. Chowdhury, K. Nishinari, Stochastic Transport in Complex Systems. From Molecules to Vehicles (Elsevier, Amsterdam, 2011)

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eftimie, R. (2018). Introduction. In: Hyperbolic and Kinetic Models for Self-organised Biological Aggregations. Lecture Notes in Mathematics(), vol 2232. Springer, Cham. https://doi.org/10.1007/978-3-030-02586-1_1

Download citation

Publish with us

Policies and ethics