Skip to main content

Different Possibilities for Modelling Cracked Masonry Structures

  • Conference paper
  • First Online:
Book cover Advanced Technologies, Systems, and Applications III (IAT 2018)

Abstract

The finite element method (FEM) is a numerical method used for solving different problems in engineering field. The starting point being a continuum media of the structure, meaning that the structure is undamaged. However, in order to be able to represent the actual stated of the structure, with all of its defects and cracks, it is necessary to incorporate these anomalies. This all with the aim that the model is a good representative of the real structure. This paper gives and overview of several numerical approached in the modelling of discontinuities on the masonry structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burland, J.B., Broms, B.B., de Mello, V.F.B.: Behavior of foundations and structures, state‐of‐the‐art report. In: 9th International Conference on Soil Mechanics and Foundation Engineering II, Tokyo, Japan (1977)

    Google Scholar 

  2. Sarhosis, V., Oliveira, D.V., Lourenco, P.B.: On the mechanical behavior of masonry. In: Sarhosis, V., Bagi, K., Lemos, J.V., Milani, G. (eds.) Computational Modeling of Masonry Structures Using the Discrete Element Method, pp. 1–27. IGI Global (2016)

    Google Scholar 

  3. Lemos, J.V.: Modeling stone masonry dynamics with 3DEC. In: Konietzky, H. (ed.) Modeling Stone Masonry Dynamics with 3DEC, pp. 7–12. Taylor & Francis Group, London (2004)

    Google Scholar 

  4. Roca, P., Cervera, M., Gariup, G., Pela’, L.: Structural analysis of masonry historical constructions. Classical and advanced approaches. Arch. Comput. Methods Eng. 17, 299–325 (2010)

    Article  Google Scholar 

  5. Lourenco, P.B.: Computations on historic masonry structures. Prog. Struct. Eng. Mater. 4(3), 301–319 (2002)

    Article  Google Scholar 

  6. Cundall, P.A.: A computer model for simulating progressive, large-scale movements in blocky rock systems. In: Proceedings of the International Symposium on Rock Fracture, Nancy, October 1971, vol. 1, paper no. II–8, pp. 129–136. International Society for Rock Mechanics (ISRM) (1971)

    Google Scholar 

  7. Cundall, P., Hart, D.: Numerical modelling of discontinua. J. Eng. Comput. 9, 101–113 (1992)

    Article  Google Scholar 

  8. Lemos, J.V.: Assessment of the ultimate load of a masonry arch using discrete elements. In: Middleton, J., Pande, G.N. (eds.) 1995 3rd International Symposium on Computer Methods in Structural Masonry, Lisbon, Portugal, pp. 294–302. Books and Journals International, Swansea (1996)

    Google Scholar 

  9. Tóth, A.R., Orbán, Z., Bagi, K.: Discrete element analysis of a stone masonry arch. Mech. Res. Commun. 36, 469–480 (2009)

    Article  Google Scholar 

  10. Kassotakis, N., Sarhosis, V., Forgács, T., Bagi, K.: Discrete element modelling of multi-ring brickwork masonry arches. In: 13th Canadian Masonry Symposium, pp. 1–11. Canada Masonry Design Centre, Halifax (2017)

    Google Scholar 

  11. Lemos, J.V.: Discrete element modelling of the seismic behaviour of stone masonry arches. In: Pande, G.N., Middleton, J., Kralj, B. (eds.) Computer Methods in Structural Masonry – 4, pp. 220–227. E&FN Spon, London (1998). Proceedings of the 4th International Symposium Numerical Methods Structural Masonry, STRUMAS IV, Florence, September 1997

    Google Scholar 

  12. DeLorenzis, L., DeJong, M.J., Ochsendorf, J.: Failure of masonry arches under impulse base motion. Earthq. Eng. Struct. Dynam. 36(14), 2119–2136 (2007)

    Article  Google Scholar 

  13. ITASCA: 3DEC - Universal Distinct Element Code Manual. Theory and Background. Itasca Consulting Group, Minneapolis (2004)

    Google Scholar 

  14. Cundall, P.A.: Formulation of a three-dimensional distinct element model. Part I: a scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mech. 25, 107–116 (1988)

    Article  Google Scholar 

  15. Giordano, A., Mele, E., De Luca, A.: Modelling of historical masonry structures: comparison of different approaches through a case study. Eng. Struct. 24, 1057–1069 (2002)

    Article  Google Scholar 

  16. Alexandris, A., Protopapa, E., Psycharis, I.: Collapse mechanisms of masonry buildings derived by the distinct element method. In: Proceedings of the 13th World Conference on Earthquake Engineering, paper no. 548 (2004)

    Google Scholar 

  17. Sarhosis, V., Oliveira, D.V., Lemos, J.V., Lourenco, P.B.: The effect of skew angle on the mechanical behaviour of masonry arches. Mech. Res. Commun. 61, 53–59 (2014)

    Article  Google Scholar 

  18. Sarhosis, V., Sheng, Y.: Identification of material parameters for low bond strength masonry. Eng. Struct. 60, 100–110 (2014)

    Article  Google Scholar 

  19. Shi, G.-H., Goodman, R.E.: Discontinuous deformation analysis. In: Proceedings of 25th U.S. Symposium Rock Mechanics, pp. 269–271. SME/AIME, Evanston (1984)

    Google Scholar 

  20. Shi, G.H.: Discontinuous deformation analysis: a new numerical model for the statics and dynamics of block system. Ph.D. thesis. Department of Civil Engineering, University of California, Berkeley, CA (1988)

    Google Scholar 

  21. Lin, C.T., Amadei, B., Jung, J., Dwyer, J.: Extensions of discontinuous deformation analysis for jointed rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 33(7), 671–694 (1996)

    Article  Google Scholar 

  22. Ma, M.Y., Pan, A.D., Luan, M., Gebara, J.M.: Stone arch bridge analysis by the DDA method. In: Arch Bridges, pp. 247–256. Thomas Telford, London (1995)

    Google Scholar 

  23. https://commons.wikimedia.org/wiki/File:Ponte_Mosca_Torino.JPG

  24. Ma, M.Y., Pan, A.D., Luan, M., Gebara, J.M.: Seismic analysis of stone arch bridges using discontinuous deformation analysis. In: 11th World Conference on Earthquake Engineering, paper no. 1551, pp. 1–8 (1995)

    Google Scholar 

  25. Thavalingam, A., Bićanić, N., Robinson, J.I., Ponniah, D.A.: Computational framework for discontinuous modelling of masonry arch bridges. Comput. Struct. 79(19), 1821–1830 (2001)

    Article  Google Scholar 

  26. Bićanić, N., Stirling, C., Pearce, C.J.: Discontinuous modelling of masonry bridges. Comput. Mech. 31, 60–68 (2003)

    Article  Google Scholar 

  27. Jean, M., Moreau, J.J.: Dynamics of elastic or rigid bodies with frictional contact and numerical methods. In: Blanc, R., Suquet, P., Raous, M. (eds.) Proceedings of the Mecanique, Modelalisation Numerique et Dynamique des Materiaux, pp. 9–29. Publications du LMA, Marseille (1991)

    Google Scholar 

  28. Allix, O., Daudeville, L., Ladevèze, P.: Proceedings of MECAMAT: Mechanics and Mechanisms of Damage in Composites and Multi-Materials, Saint-Etienne, 15–17 November 1989, p. 143 (1989). Baptiste, D. (ed.)

    Google Scholar 

  29. Chetouane, B., Dubois, F., Vinches, M., Bohatier, C.: NSCD discrete element method for modelling masonry structures. Int. J. Numer. Methods Eng. 64, 65–94 (2005)

    Article  MathSciNet  Google Scholar 

  30. Acary, V., Jean, M.: Numerical simulation of monuments by the contact dynamics method. In: Workshop on Seismic Performance of Monuments, DGEMN-LNEC-JRC, Monument 1998, Lisbon, Portugal, November 1998, pp. 69–78 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naida Ademovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ademovic, N., Hadzima-Nyarko, M. (2019). Different Possibilities for Modelling Cracked Masonry Structures. In: Avdaković, S. (eds) Advanced Technologies, Systems, and Applications III. IAT 2018. Lecture Notes in Networks and Systems, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-030-02577-9_13

Download citation

Publish with us

Policies and ethics