Advertisement

Solving Linear Wave Equation Using a Finite-Volume Method in Time Domain on Unstructured Computational Grids

  • Muris TorlakEmail author
  • Vahidin Hadžiabdić
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 59)

Abstract

In this paper, numerical solving second-order wave equation using a cell-centered finite-volume method with collocated variable arrangement on unstructured computational grids in spatial domains of arbitrary shape is discussed. A second-order accurate technique is used for discretization of spatial derivatives. Two different discretization schemes for approximation of the time derivative are employed and tested within an implicit method for time integration. Application of the numerical method is demonstrated in three simple examples.

References

  1. 1.
    Kreyszig, E., et al.: Advanced Engineering Mathematics, 10th edn. Wiley, Hoboken (2011)Google Scholar
  2. 2.
    Vuković, M.: Diferencijalne jednačine 2, parcijalne diferencijalne jednačine, jedna-čine matematičke fizike. Univerzitet u Sarajevu, Sarajevo (2001)Google Scholar
  3. 3.
    Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Rowley, C.W., Colonius, T.: Discretely nonreflecting boundary conditions for linear hyperbolic systems. J. Comput. Phys. 157, 500–538 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Britt, S., Tsynkov, S., Turkel, E.: Numerical solution of the wave equation with variable wave speed on nonconforming domains by high-order difference potentials. J. Comput. Phys. 354, 26–42 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Demirdžić, I., Muzaferija, S.: Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Comput. Methods Appl. Mech. Eng. 125(1–4), 235–255 (1995)CrossRefGoogle Scholar
  7. 7.
    Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Demirdžić, I., Martinović, D.: Finite-volume method for thermoelasto-plastic stress-analysis. Comput. Methods Appl. Mech. Eng. 109, 331–349 (1993)CrossRefGoogle Scholar
  9. 9.
    Demirdžić, I., Lilek, Ž., Perić, M.: A collocated finite-volume method for predicting flows at all speeds. Int. J. Numer. Methods Fluids 16, 1029–1050 (1993)CrossRefGoogle Scholar
  10. 10.
    Ivanković, A., Muzaferija, A., Demirdžić, I.: Finite volume method and multigrid acceleration in modelling of rapid crack propagation in full-scale pipe test. Comput. Mech. 20(1–2), 46–52 (1997)CrossRefGoogle Scholar
  11. 11.
    Muzaferija, S., Perić, M.: Computation of free-surface flows using finite volume method and moving grids. Numer. Heat Transf. – Part B 32, 369–384 (1997)Google Scholar
  12. 12.
    Muzaferija, S., Perić, M.: Computation of free surface flows using interface-tracking and interface-capturing methods, In: Mahrenholtz, O., Markiewicz, M. (eds.) Nonlinear Water Wave Interaction, Chap. 2. Computational Mechanics Publications, Southampton (1998)Google Scholar
  13. 13.
    Wheel, M.A.: A finite volume method for analysing the bending deformation of thick and thin plates. Comput. Methods Appl. Mech. Eng. 147(1–2), 199–208 (1997)CrossRefGoogle Scholar
  14. 14.
    Greenshields, C.J., Venizelos, G.P., Ivanković, A.: A fluid-structure model for fast brittle fracture in plastic pipes. J. Fluids Struct. 14(2), 221–234 (2000)CrossRefGoogle Scholar
  15. 15.
    Demirdžić, I., Horman, I., Martinović, D.: Finite volume analysis of stress and deformation in hygro-thermo-elastic orthotropic body. Comput. Methods Appl. Mech. Eng. 190, 1221–1232 (2000)CrossRefGoogle Scholar
  16. 16.
    Teskerežić, A., Demirdžić, I., Muzaferija, S.: Numerical method for heat transfer, fluid flow, and stress analysis in phase-change problems. Numer. Heat Transf. B 42, 437–459 (2002)CrossRefGoogle Scholar
  17. 17.
    Demirdžić, I., Džafarović, E., Ivanković, A.: Finite-volume approach to thermo-viscoelasticity. Numer. Heat Transf. Part B: Fundam. 47(3), 213–237 (2005)CrossRefGoogle Scholar
  18. 18.
    Bašić, H., Demirdžić, I., Muzaferija, S.: Finite volume method for simulation of extrusion processes. Int. J. Numer. Methods Eng. 62(4), 475–494 (2005)CrossRefGoogle Scholar
  19. 19.
    Bijelonja, I., Demirdžić, I., Muzaferija, S.: A finite volume method for large strain analysis of incompressible hyperelastic materials. Int. J. Numer. Methods Eng. 64(12), 1594–1609 (2005)CrossRefGoogle Scholar
  20. 20.
    Bijelonja, I., Demirdžić, I., Muzaferija, S.: A finite volume method for incompressible linear elasticity. Comput. Methods Appl. Mech. Eng. 195(44–47), 6378–6390 (2006)CrossRefGoogle Scholar
  21. 21.
    Neimarlija, N., Demirdžić, I., Muzaferija, S.: Finite volume method for calculation of electrostatic fields in electrostatic precipitators. J. Electrostat. 67, 37–47 (2009)CrossRefGoogle Scholar
  22. 22.
    Cardiff, P., Karač, A., Ivanković, A.: Development of a finite volume contact solver based on the penalty method. Comput. Mater. Sci. 64, 283–284 (2012)CrossRefGoogle Scholar
  23. 23.
    Teskeredžić, A., Demirdžić, I., Muzaferija, S.: Numerical method for calculation of complete casting process - part i: theory. Numer. Heat Transf. B 68, 295–316 (2015)CrossRefGoogle Scholar
  24. 24.
    Teskeredžić, A., Demirdžić, I., Muzaferija, S.: Numerical method for calculation of complete casting process - part II: validation and application. Numer. Heat Transf. B 68, 317–335 (2015)CrossRefGoogle Scholar
  25. 25.
    Demirdžić, I., Muzaferija, S.: Finite volume method for stress analysis in complex domains. Int. J. Numer. Methods Eng. 37, 3751–3766 (1994)CrossRefGoogle Scholar
  26. 26.
    Wheel, M.A.: A geometrically versatile finite volume formulation for plane elastostatic stress analysis. J. Strain Anal. Eng. Des. 31(2), 111–116 (1996)CrossRefGoogle Scholar
  27. 27.
    Demirdžić, I., Muzaferija, S., Perić, M.: Benchmark solutions of some structural analysis problems using the finite-volume method and multigrid acceleration. Int. J. Numer. Methods Eng. 40, 1893–1908 (1997)CrossRefGoogle Scholar
  28. 28.
    Jasak, H., Weller, H.G.: Application of the finite volume method and unstructured meshes to linear elasticity. Int. J. Numer. Methods Eng. 48, 267–287 (2000)CrossRefGoogle Scholar
  29. 29.
    Demirdžić, I.: A fourth-order finite volume method for structural analysis. Appl. Math. Model. 40, 3104–3114 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Golubović, A., Demirdžić, I., Muzaferija, S.: Finite volume analysis of laminated composite plates. Int. J. Numer. Methods Eng. 109, 1607–1620 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Torlak, M.: A finite-volume method for coupled numerical analysis of incompressible fluid flow and linear deformation of elastic structures. Ph.D. thesis, Technische Universität Hamburg-Harburg, Arbeitsbereiche Schiffbau, Hamburg (2006)Google Scholar
  32. 32.
    Houbolt, J.C.: A recurrence matrix solution for the dynamic response of elastic aircraft. J. Aeronaut. Sci. 17, 540–550 (1950)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mechanical Engineering FacultyUniversity of SarajevoSarajevoBosnia-Herzegovina

Personalised recommendations