Skip to main content

Solving Linear Wave Equation Using a Finite-Volume Method in Time Domain on Unstructured Computational Grids

  • Conference paper
  • First Online:
Advanced Technologies, Systems, and Applications III (IAT 2018)

Abstract

In this paper, numerical solving second-order wave equation using a cell-centered finite-volume method with collocated variable arrangement on unstructured computational grids in spatial domains of arbitrary shape is discussed. A second-order accurate technique is used for discretization of spatial derivatives. Two different discretization schemes for approximation of the time derivative are employed and tested within an implicit method for time integration. Application of the numerical method is demonstrated in three simple examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreyszig, E., et al.: Advanced Engineering Mathematics, 10th edn. Wiley, Hoboken (2011)

    Google Scholar 

  2. Vuković, M.: Diferencijalne jednačine 2, parcijalne diferencijalne jednačine, jedna-čine matematičke fizike. Univerzitet u Sarajevu, Sarajevo (2001)

    Google Scholar 

  3. Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)

    Article  MathSciNet  Google Scholar 

  4. Rowley, C.W., Colonius, T.: Discretely nonreflecting boundary conditions for linear hyperbolic systems. J. Comput. Phys. 157, 500–538 (2000)

    Article  MathSciNet  Google Scholar 

  5. Britt, S., Tsynkov, S., Turkel, E.: Numerical solution of the wave equation with variable wave speed on nonconforming domains by high-order difference potentials. J. Comput. Phys. 354, 26–42 (2018)

    Article  MathSciNet  Google Scholar 

  6. Demirdžić, I., Muzaferija, S.: Numerical method for coupled fluid flow, heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology. Comput. Methods Appl. Mech. Eng. 125(1–4), 235–255 (1995)

    Article  Google Scholar 

  7. Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics. Springer, Heidelberg (2002)

    Google Scholar 

  8. Demirdžić, I., Martinović, D.: Finite-volume method for thermoelasto-plastic stress-analysis. Comput. Methods Appl. Mech. Eng. 109, 331–349 (1993)

    Article  Google Scholar 

  9. Demirdžić, I., Lilek, Ž., Perić, M.: A collocated finite-volume method for predicting flows at all speeds. Int. J. Numer. Methods Fluids 16, 1029–1050 (1993)

    Article  Google Scholar 

  10. Ivanković, A., Muzaferija, A., Demirdžić, I.: Finite volume method and multigrid acceleration in modelling of rapid crack propagation in full-scale pipe test. Comput. Mech. 20(1–2), 46–52 (1997)

    Article  Google Scholar 

  11. Muzaferija, S., Perić, M.: Computation of free-surface flows using finite volume method and moving grids. Numer. Heat Transf. – Part B 32, 369–384 (1997)

    Google Scholar 

  12. Muzaferija, S., Perić, M.: Computation of free surface flows using interface-tracking and interface-capturing methods, In: Mahrenholtz, O., Markiewicz, M. (eds.) Nonlinear Water Wave Interaction, Chap. 2. Computational Mechanics Publications, Southampton (1998)

    Google Scholar 

  13. Wheel, M.A.: A finite volume method for analysing the bending deformation of thick and thin plates. Comput. Methods Appl. Mech. Eng. 147(1–2), 199–208 (1997)

    Article  Google Scholar 

  14. Greenshields, C.J., Venizelos, G.P., Ivanković, A.: A fluid-structure model for fast brittle fracture in plastic pipes. J. Fluids Struct. 14(2), 221–234 (2000)

    Article  Google Scholar 

  15. Demirdžić, I., Horman, I., Martinović, D.: Finite volume analysis of stress and deformation in hygro-thermo-elastic orthotropic body. Comput. Methods Appl. Mech. Eng. 190, 1221–1232 (2000)

    Article  Google Scholar 

  16. Teskerežić, A., Demirdžić, I., Muzaferija, S.: Numerical method for heat transfer, fluid flow, and stress analysis in phase-change problems. Numer. Heat Transf. B 42, 437–459 (2002)

    Article  Google Scholar 

  17. Demirdžić, I., Džafarović, E., Ivanković, A.: Finite-volume approach to thermo-viscoelasticity. Numer. Heat Transf. Part B: Fundam. 47(3), 213–237 (2005)

    Article  Google Scholar 

  18. Bašić, H., Demirdžić, I., Muzaferija, S.: Finite volume method for simulation of extrusion processes. Int. J. Numer. Methods Eng. 62(4), 475–494 (2005)

    Article  Google Scholar 

  19. Bijelonja, I., Demirdžić, I., Muzaferija, S.: A finite volume method for large strain analysis of incompressible hyperelastic materials. Int. J. Numer. Methods Eng. 64(12), 1594–1609 (2005)

    Article  Google Scholar 

  20. Bijelonja, I., Demirdžić, I., Muzaferija, S.: A finite volume method for incompressible linear elasticity. Comput. Methods Appl. Mech. Eng. 195(44–47), 6378–6390 (2006)

    Article  Google Scholar 

  21. Neimarlija, N., Demirdžić, I., Muzaferija, S.: Finite volume method for calculation of electrostatic fields in electrostatic precipitators. J. Electrostat. 67, 37–47 (2009)

    Article  Google Scholar 

  22. Cardiff, P., Karač, A., Ivanković, A.: Development of a finite volume contact solver based on the penalty method. Comput. Mater. Sci. 64, 283–284 (2012)

    Article  Google Scholar 

  23. Teskeredžić, A., Demirdžić, I., Muzaferija, S.: Numerical method for calculation of complete casting process - part i: theory. Numer. Heat Transf. B 68, 295–316 (2015)

    Article  Google Scholar 

  24. Teskeredžić, A., Demirdžić, I., Muzaferija, S.: Numerical method for calculation of complete casting process - part II: validation and application. Numer. Heat Transf. B 68, 317–335 (2015)

    Article  Google Scholar 

  25. Demirdžić, I., Muzaferija, S.: Finite volume method for stress analysis in complex domains. Int. J. Numer. Methods Eng. 37, 3751–3766 (1994)

    Article  Google Scholar 

  26. Wheel, M.A.: A geometrically versatile finite volume formulation for plane elastostatic stress analysis. J. Strain Anal. Eng. Des. 31(2), 111–116 (1996)

    Article  Google Scholar 

  27. Demirdžić, I., Muzaferija, S., Perić, M.: Benchmark solutions of some structural analysis problems using the finite-volume method and multigrid acceleration. Int. J. Numer. Methods Eng. 40, 1893–1908 (1997)

    Article  Google Scholar 

  28. Jasak, H., Weller, H.G.: Application of the finite volume method and unstructured meshes to linear elasticity. Int. J. Numer. Methods Eng. 48, 267–287 (2000)

    Article  Google Scholar 

  29. Demirdžić, I.: A fourth-order finite volume method for structural analysis. Appl. Math. Model. 40, 3104–3114 (2016)

    Article  MathSciNet  Google Scholar 

  30. Golubović, A., Demirdžić, I., Muzaferija, S.: Finite volume analysis of laminated composite plates. Int. J. Numer. Methods Eng. 109, 1607–1620 (2017)

    Article  MathSciNet  Google Scholar 

  31. Torlak, M.: A finite-volume method for coupled numerical analysis of incompressible fluid flow and linear deformation of elastic structures. Ph.D. thesis, Technische Universität Hamburg-Harburg, Arbeitsbereiche Schiffbau, Hamburg (2006)

    Google Scholar 

  32. Houbolt, J.C.: A recurrence matrix solution for the dynamic response of elastic aircraft. J. Aeronaut. Sci. 17, 540–550 (1950)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muris Torlak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torlak, M., Hadžiabdić, V. (2019). Solving Linear Wave Equation Using a Finite-Volume Method in Time Domain on Unstructured Computational Grids. In: Avdaković, S. (eds) Advanced Technologies, Systems, and Applications III. IAT 2018. Lecture Notes in Networks and Systems, vol 59. Springer, Cham. https://doi.org/10.1007/978-3-030-02574-8_28

Download citation

Publish with us

Policies and ethics