Skip to main content

Energy-Maximizing Control for Ocean Energy Converter

  • Chapter
  • First Online:
Underwater Wireless Power Transfer

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 744 Accesses

Abstract

This chapter presents two control methods, MPEC for maximum power extraction of Smart-WEC and MLCT for life cycle extension of tidal energy converter. The results show that MPEC significantly increase power extraction by the Smart-WEC. Also, in order to eliminate speed sensor in the MLCT technique, an artificial neural network is adopted to estimate the tidal speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Mendonca, S. Martinez, A resistance emulation approach to optimize the wave energy harvesting for a direct drive point absorber. IEEE Trans. Sustainable Energy 7(1), 3–11 (2016)

    Article  Google Scholar 

  2. X. Xiao, X. Huang, Q. Kang, A hill-climbing-method-based maximum-power-point-tracking strategy for direct-drive wave energy converters. IEEE Trans. Ind. Electron. 63(1), 257–267 (2016)

    Article  Google Scholar 

  3. J.S. Park, B.G. Gu, J.R. Kim, I.H. Cho, I. Jeong, J. Lee, Active phase control for maximum power point tracking of a linear wave generator. IEEE Trans. Power Electron. 32(10), 7651–7662 (2017)

    Article  Google Scholar 

  4. P. Ricci, J. Lopez, M. Santos, P. Ruiz-Minguela, J.L. Villate, F. Salcedo, A.F.d. Falcao, Control strategies for a wave energy converter connected to a hydraulic power take-off. IET Renew. Power Gener. 5(3), 234–244 (2011)

    Article  Google Scholar 

  5. V.J. Antonio, A.D. Montoya, G.S. Agustín, Increasing the efficiency of the passive loading strategy for wave energy conversion. J. Renew. Sustainable Energy 5(5), 053132 (2013)

    Google Scholar 

  6. D.E.A.M. Andrade, A. de la Villa Jaén, A.G. Santana, Improvements in the reactive control and latching control strategies under maximum excursion constraints using short-time forecast. IEEE Trans. Sustainable Energy 7(1), 427–435 (2016)

    Article  Google Scholar 

  7. Z. Feng, E.C. Kerrigan, Latchingdeclutching control of wave energy converters using derivative-free optimization. IEEE Trans. Sustainable Energy 6(3), 773–780 (2015)

    Article  Google Scholar 

  8. F. Fusco, J.V. Ringwood, A simple and effective real-time controller for wave energy converters. IEEE Trans. Sustainable Energy 4(1), 21–30 (2015)

    Article  Google Scholar 

  9. N. Tom, R.W. Yeung, Experimental confirmation of nonlinear-model-predictive control applied offline to a permanent magnet linear generator for ocean-wave energy conversion. IEEE J. Ocean. Eng. 41(2), 281–295 (2016)

    Article  Google Scholar 

  10. M.C. Sousounis, J.K.H. Shek, M.A. Mueller, Modelling, control and frequency domain analysis of a tidal current conversion system with onshore converters. IET Renew. Power Gener. 10(2), 158–165 (2016)

    Article  Google Scholar 

  11. A. de la Villa-Jaén, D.E. Montoya-Andrade, A. García-Santana, Control strategies for point absorbers considering linear generator copper losses and maximum excursion constraints. IEEE Trans. Sustainable Energy 9(1), 433–442 (2018)

    Article  Google Scholar 

  12. L. Ran, M.A. Mueller, C. Ng, P.J. Tavner, H. Zhao, N.J. Baker, S. Mcdonald, P. Mckeever, Power conversion and control for a linear direct drive permanent magnet generator for wave energy. IET Renew. Power Gener. 5(1), 1–9 (2011)

    Article  Google Scholar 

  13. P. Brooking, M. Mueller, Power conditioning of the output from a linear vernier hybrid permanent magnet generator for use in direct drive wave energy converters. IEEE Proc. Gener. Transm. Distrib. 152, 673–681 (2005)

    Article  Google Scholar 

  14. P.C.J. Clifton, R.A. McMahon, H.-P. Kelly, Design and commissioning of a 30 kw direct drive wave generator, in IET Conference on Power Electronics, Machines and Drives, Brighton, UK, Apr. 2010

    Google Scholar 

  15. M. Preindl, E. Schaltz, Sensorless model predictive direct current control using novel second-order PLL observer for PMSM drive systems. IEEE Trans. Ind. Electron. 58(9), 4087–4095 (2011)

    Article  Google Scholar 

  16. R. Vermaak, M.J. Kamper, Experimental evaluation and predictive control of an air-cored linear generator for direct-drive wave energy converters. IEEE Trans. Ind. Appl. 48(6), 1817–1826 (2012)

    Article  Google Scholar 

  17. T. Orekan, Z. Zhao, P. Zhang, J. Zhang, S. Zhou, J. Cui, Maximum lifecycle tracking for tidal energy generation system. Electr. Power Compon. Syst. 43, 8–10 (2015)

    Article  Google Scholar 

  18. M. Jackson, S. Umans, R. Dunlop, S. Horowitz, A. Parikh, Turbine-generator shaft torques and fatigue: Part I - simulation methods and fatigue analysis. IEEE Trans. Power Apparatus Syst. 98(6), 2299–2307 (1979)

    Article  Google Scholar 

  19. A. Secil, Fatigue life calculation by rainflow cycle counting method, Master’s thesis, Middle East Technical University, Ankara, Turkey, 2004

    Google Scholar 

  20. A. Mullane, G. Bryans, M. O’Malley, Kinetic energy and frequency response comparison for renewable generation systems, in 2005 International Conference on Future Power Systems (2005)

    Google Scholar 

  21. S.B. Elghali, R. Balme, K.L. Saux, M. Benbouzid, J. Charpentier, F. Hauville, A simulation model for the evaluation of the electrical power potential harnessed by a marine current turbine. IEEE J. Ocean. Eng. 32(4), 786–797 (2008)

    Article  Google Scholar 

  22. M.H. Beale, M.T. Hagan, H.B. Demuth, Tech. Rep., 2014. Available: http://www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf

  23. S. Bifaretti, P. Zanchetta, F. Iov, J. Clare, Predictive current control of a 7-level ac-dc back-to-back converter for universal and flexible power management system, in Power Electronics and Motion Control Conference, 2008. EPE-PEMC 2008. 13th (2008)

    Google Scholar 

  24. L. Kan, Z. Zhu, Online estimation of the rotor flux linkage and voltage-source inverter nonlinearity in permanent magnet synchronous machine drives. IEEE Trans. Power Electron. 29(1), 418–427 (2014)

    Article  Google Scholar 

  25. J. Belanger, P. Venne, J. Paquin, The what, where and why of real-time simulation, in in Planet RT (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orekan, T., Zhang, P. (2019). Energy-Maximizing Control for Ocean Energy Converter. In: Underwater Wireless Power Transfer. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-02562-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02562-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02561-8

  • Online ISBN: 978-3-030-02562-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics