Skip to main content

Overview of the Smart Ocean Energy Converter

  • Chapter
  • First Online:
  • 819 Accesses

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

In this chapter, an overview of ocean energy (wave and tidal) converter is presented. The basic concepts and technical challenges hindering the advancement of these technologies are summarized. Smart-WEC, a new type of wave energy converter, with a unique underwater wireless power transfer system is introduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Raja, L.C. Videira, B. Pierre, Battery lifetime estimation and optimization for underwater sensor networks. IEEE Sensor Netw. Oper. 2006, 397–420 (2004)

    Google Scholar 

  2. M. Annette, J.G. Vining, Ocean wave energy conversion-a survey, in Industry Applications Conference, 41st IAS Annual Meeting, vol. 3 (2006), pp. 1410–1417

    Google Scholar 

  3. J. Lehmkoster, T. Schroder, D. Ladischensky, Marine minerals and energy. Tech. Rep. 2010 [Online]. http://worldoceanreview.com/wp-content/downloads/wor1/WOR1chapter7.pdf

  4. E. Siirila, Un atlas: 44 percent of us live in coastal areas [Online]. https://coastalchallenges.com/2010/01/31/un-atlas-60-of-us-live-in-the-coastal-areas/

  5. C. João, S. Rebecca, S. Philip, T.R. Eatock, Estimating the loads and energy yield of arrays of wave energy converters under realistic seas. IET Renew. Power Gen. 4(6), 488 (2010)

    Google Scholar 

  6. Z. Peng, W. Yang, X. Weidong, L. Wenyuan, Reliability evaluation of grid-connected photovoltaic power systems. IEEE Trans. Sustain. Energy 3(3), 379–389 (2012)

    Article  Google Scholar 

  7. W. Yang, Z. Peng, L. Wenyuan, K. Nadim, Comparative analysis of the reliability of grid-connected photovoltaic power systems, in IEEE Power and Energy Society General Meeting, San Diego (2012), pp. 1–8

    Google Scholar 

  8. J. Zhang, X. Xiao, P. Zhang, J. Lu, T. Orekan, Subsynchronous control interaction analysis and a trigger-based active damping control for dfig-based wind turbines. Electr. Power Compon. Syst. 44(7), 713–725 (2016)

    Article  Google Scholar 

  9. D. Benjamin, A.R. Plummer, S.M. Necip, A review of wave energy converter technology. Proc. Inst. Mech. Eng. A J. Power Energy 223(8), 887–902 (2009)

    Article  Google Scholar 

  10. H. Titah-Benbouzid, M. Benbouzid, Development and demonstration of the WEC-sim wave energy converter simulation tool, in Proceedings of the 2nd Marine Energy Technology Symposium, Shanghai, China (2014)

    Google Scholar 

  11. H. Titah-Benbouzid, M. Benbouzid, An up-to-date technologies review and evaluation of wave energy converters. Int. Rev. Electr. Eeng. IREE 10(1), 52–61 (2015)

    Article  Google Scholar 

  12. P. Holmberg, M. Andersson, B. Bolund, Kerstinand, T. Schroder, D. Ladischensky, Wave power surveillance study of the development. Tech. Rep. 2011 [Online]. https://energiforskmedia.blob.core.windows.net/media/19924/wave-power-surveillance-study-of-the-development-elforskrapporter-2011-02.pdf. Accessed 10 June 2018

  13. NREL.GOV, New wave energy converter design inspired by wind energy. Tech. Rep., 2018 [Online]. https://www.nrel.gov/news/program/2018/new-wave-energy-converter-design-inspired-by-wind-energy.html. Accessed 7 Sept. 2018

  14. P.B. Garcia-Rosa, J.P.V.S. Cunha, F. Lizarralde, S.F. Estefen, I.R. Machado, E.H. Watanabe, Wave-to-wire model and energy storage analysis of an ocean wave energy hyperbaric converter. IEEE J. Ocean. Eng. 39(2), 1817–1828 (2014)

    Article  Google Scholar 

  15. P.C.J. Clifton, A. McMahon, H.P. Kelly, Design and commissioning of a 30kw direct drive wave generator, in IET Conference on Power Electronics, Machines and Drives (PEMD), Brighton, UK (2010)

    Google Scholar 

  16. L. Cappelli, F. Marignetti, G. Mattiazzo, E. Giorcelli, G. Bracco, S. Carbone, C. Attaianese, Linear tubular permanent-magnet generators for the inertial sea wave energy converter. IEEE Trans. Ind. Appl. 50(3), 1817–1828 (2014)

    Article  Google Scholar 

  17. D.E.A.M. Andrade, A. de la Villa Jaén, A.G. Santana, Improvements in the reactive control and latching control strategies under maximum excursion constraints using short-time forecast. IEEE Trans. Sustain. Energy 7(1), 427–435 (2016)

    Article  Google Scholar 

  18. Z. Feng, E.C. Kerrigan, Latchingdeclutching control of wave energy converters using derivative-free optimization. IEEE Trans. Sustain. Energy 6(3), 773–780 (2015)

    Article  Google Scholar 

  19. F. Fusco, J.V. Ringwood, A simple and effective real-time controller for wave energy converters. IEEE Trans. Sustain. Energy 4, (1), 21–30 (2015)

    Article  Google Scholar 

  20. M. Rowell, Experimental evaluation of mixer ejector hydrokinetc turbine (MEHT) at two tidal energy test sites and in a tow tank. Tech. Rep. 2013 [Online]. http://www.mrec.umassd.edu/media/supportingfiles/mrec/agendasandpresentations/4thconference/matthew/rowell.pdf

  21. M. Shahsavarifard, Effect of shroud on performance of horizontal axis hydrokinetic turbine. Tech. Rep. 2013 [Online]. http://www.mrec.umassd.edu/4thconference

  22. Y. Zhao, X. Su, Tidal energy: technologies and recent developments, in IEEE International Energy Conference and Exhibition (EnergyCon) (2013), pp. 618–623

    Google Scholar 

  23. W. Huai, M. Liserre, F. Blaabjerg, R.D. Place, J. Jacobsen, T. Kvisgaard, J. Landkildehus, Transitioning to physics-of-failure as a reliability driver in power electronics. IEEE J. Emerg. Sel. Topics Power Electron. 2(1), 97–114 (2014)

    Article  Google Scholar 

  24. S. Benelghali, M.E.H. Benbouzid, J. Charpentier, T. Ahmed-Ali, I. Munteanu, Experimental validation of a marine current turbine simulator: application to a permanent magnet synchronous generator-based system second-order sliding mode control. IEEE Trans. Ind. Electron. 58(1), 118–126 (2011)

    Article  Google Scholar 

  25. K. Sean, Failed tidal turbine explained at symposium [Online]. http://www.cbc.ca/news/canada/nova-scotia/failed-tidal-turbine-explained-at-symposium-1.1075510

  26. D.N. Walker, S.L. Adams, R.J. Placek, Torsional vibration and fatigue of turbine-generator shafts. IEEE Trans. Power Apparatus Syst. 58(11), 4373–4380 (1981)

    Article  Google Scholar 

  27. M. Jackson, S. Umans, R. Dunlop, S. Horowitz, A. Parikh, Turbine-generator shaft torques and fatigue: Part I - simulation methods and fatigue analysis. IEEE Trans. Power Apparatus Syst. 98(6), 2299–2307 (1979)

    Article  Google Scholar 

  28. T. Hammons, Accumulative fatigue life expenditure of turbine/generator shafts following worst-case system disturbances. IEEE Trans. Power Apparatus Syst. 101(7): 2364–2374 (1982)

    Article  Google Scholar 

  29. J. Song-Manguelle, S. Schroder, T. Geyer, G. Ekemb, J. Nyobe-Yome, Prediction of mechanical shaft failures due to pulsating torques of variable-frequency drives. IEEE Trans. Ind. Appl. 46(5), 979–1988 (2010)

    Article  Google Scholar 

  30. C. Iliev, V. Val, Tidal current turbine reliability: power take-off train models and evaluation, in 3rd International Conference on Ocean Energy (2010)

    Google Scholar 

  31. D.A. Douglas, T. Brekken, Monte carlo analysis of the impacts of high renewable power penetration, in IEEE Energy Conversion Congress and Exposition (ECCE) (2011), pp. 3059–3066

    Google Scholar 

  32. J. Song-Manguelle, S. Schröder, T. Geyer, G. Ekemb, J.-M. Nyobe-Yome, Prediction of mechanical shaft failures due to pulsating torques of variable-frequency drives. IEEE Trans. Ind. Appl. 46(5), 1979–1988 (2010)

    Article  Google Scholar 

  33. A. Secil, Fatigue life calculation by rainflow cycle counting method. Master’s thesis, Middle East Technical University, Ankara, Turkey, 2004

    Google Scholar 

  34. D.N. Walker, S.L. Adams, R.J. Placek, Torsional vibration and fatigue of turbine-generator shafts. IEEE Trans. Power Apparatus Syst. PAS-100(11), 4373–4380 (1981)

    Article  Google Scholar 

  35. C. Iliev, D. Val, Tidal current turbine reliability: power take-off train models and evaluation, in Proceedings of 3rd International Conference on Ocean Energy, Bilbao (2010)

    Google Scholar 

  36. S. Adhikari, L. Fangxing, Coordinated v-f and p-q control of solar photovoltaic generators with mppt and battery storage in microgrids. IEEE Trans. Smart Grid 5(3), 1270–1281 (2014)

    Article  Google Scholar 

  37. M. Pucci, M. Cirrincione, Neural MPPT control of wind generators with induction machines without speed sensors. IEEE Trans. Ind. Electron. 58(1), 37–47 (2010)

    Article  Google Scholar 

  38. A. Brecher, D. Arthur, Review and evaluation of wireless power transfer (WPT) for electric transit applications. Tech. Rep. 2014 [Online]. https://www.transit.dot.gov/sites/fta.dot.gov/files/FTA_Report_No._0060.pdf

  39. W.C. Brown, The history of power transmission by radio waves. IEEE Trans. Microw. Theory Tech. 32(9), 1230–1242 (1984)

    Article  Google Scholar 

  40. S. Sasaki, K. Tanaka, K. Maki, Microwave power transmission technologies for solar power satellites. Proc. IEEE 101(6), 1438–1447 (2013)

    Article  Google Scholar 

  41. T. Ishiyama, Y. Kanai, J. Ohwaki, M. Mino, Impact of a wireless power transmission system using an ultrasonic air transducer for low-power mobile applications, in IEEE Symposium on Ultrasonics, 2003, vol. 2 (2003), 1368–1371

    Google Scholar 

  42. M.G.L. Roes, M.A.M. Hendrix, J.L. Duarte, Contactless energy transfer through air by means of ultrasound, in IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society (2011), pp. 1238–1243

    Google Scholar 

  43. M.G.L. Roes, J.L. Duarte, M.A.M. Hendrix, E.A. Lomonova, Acoustic energy transfer: a review. IEEE Trans. Ind. Electron. 60(1), 242–248 (2013)

    Article  Google Scholar 

  44. T.C. Chang, M.J. Weber, M.L. Wang, J. Charthad, B.P.T. Khuri-Yakub, A. Arbabian, Design of tunable ultrasonic receivers for efficient powering of implantable medical devices with reconfigurable power loads. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63(10), 1554–1562 (2016)

    Article  Google Scholar 

  45. V.F. Tseng, S.S. Bedair, N. Lazarus, Phased array focusing for acoustic wireless power transfer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(1), 39–49 (2018)

    Article  Google Scholar 

  46. P.E. Glaser, Power from the sun: its future. Science 162(3856), 857–861 (1968)

    Article  Google Scholar 

  47. N. Tesla (ed.), Experiments With Alternate Currents of Very High Frequency and Their Application to Methods of Artificial Illumination (Wilder, Radford, 2008)

    Google Scholar 

  48. T.C. Martin, N. Tesla (eds.), The Inventions Researches and Writings of Nikola Tesla With Special Reference to His Work in Polyphase Currents and High Potential Lighting (Prabhat, New York, 1894)

    Google Scholar 

  49. J. Dai, D.C. Ludois, A survey of wireless power transfer and a critical comparison of inductive and capacitive coupling for small gap applications. IEEE Trans. Power Electron. 30(11), 6017–6029 (2015)

    Article  Google Scholar 

  50. M.H.M. Salleh, N. Seman, D.N.A. Zaidel, Design of a compact planar witricity device with good efficiency for wireless applications, in 2014 Asia-Pacific Microwave Conference, Sendai (2014), pp. 139–137

    Google Scholar 

  51. H.W. Benjamin, P.S. Alanson, R.S. Joshua, Adaptive impedance matching for magnetically coupled resonators, in PIERS Proceedings, Moscow (2012), pp. 694–702

    Google Scholar 

  52. L. Yongseok, T. Hoyoung, L. Seungok, P. Jongsun, An adaptive impedance-matching network based on a novel capacitor matrix forwireless power transfer. IEEE Trans. Power Electron. 29(8), 4403–4414 (2014)

    Article  Google Scholar 

  53. E.K. Kim, C.B. Teck, I. Takehiro, H. Yoichi, Impedance matching and power division using impedance inverter for wireless power transfer via magnetic resonant coupling. IEEE Trans. Ind. Appl. 50(3), 2061–2071 (2014)

    Article  Google Scholar 

  54. X. Yu, T. Skauli, B. Skauli, S. Sandhu, P. Catrysse, S. Fan, Wireless power transfer in the presence of metallic plates: experimental results. AIP Adv. 3(6), 062102 (2013)

    Article  Google Scholar 

  55. H. Singh, S. Lerner, K. von der Heyt, B.A. Moran, An intelligent dock for an autonomous ocean sampling network, in IEEE Oceanic Engineering Society. OCEANS’98. Conference Proceedings (Cat. No.98CH36259), vol. 3 (1998), pp. 1459–1462

    Google Scholar 

  56. M. Luciano, Navy’s underwater wireless charging station can improve remote UUV mission performance (2018) [Online]. https://www.ecnmag.com/blog/2018/05/navys-underwater-wireless-charging-station-can-improve-remote-uuv-mission-performance. Accessed 11 Aug. 2018

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orekan, T., Zhang, P. (2019). Overview of the Smart Ocean Energy Converter. In: Underwater Wireless Power Transfer. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-030-02562-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02562-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02561-8

  • Online ISBN: 978-3-030-02562-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics