Skip to main content

A Class of Non-parametric Deformed Exponential Statistical Models

  • Chapter
  • First Online:
Geometric Structures of Information

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

We study the class on non-parametric deformed statistical models where the deformed exponential has linear growth at infinity and is sub-exponential at zero. This class generalizes the class introduced by N.J. Newton. We discuss the convexity and regularity of the normalization operator, the form of the deformed statistical divergences and their convex duality, the properties of the escort densities, and the affine manifold structure of the statistical bundle

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S.: Dual connections on the Hilbert bundles of statistical models. In: Geometrization of Statistical Theory (Lancaster, 1987), pp. 123–151. ULDM Publ. (1987)

    Google Scholar 

  2. Amari, S., Nagaoka, H.: Methods of Information Geometry. American Mathematical Society, Providence (2000). Translated from the 1993 Japanese original by Daishi Harada

    Google Scholar 

  3. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics, vol. 34. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  4. Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators. Cambridge Tracts in Mathematics, vol. 95. Cambridge University Press, Cambridge (1990). https://doi.org/10.1017/CBO9780511897450

  5. Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information Geometry. Springer, Berlin (2017)

    Book  Google Scholar 

  6. Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1960)

    MATH  Google Scholar 

  7. Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics, vol. 28, English edn. Society for Industrial and Applied Mathematics (SIAM) (1999). https://doi.org/10.1137/1.9781611971088. Translated from the French

  8. Gibilisco, P., Pistone, G.: Connections on non-parametric statistical manifolds by Orlicz space geometry. IDAQP 1(2), 325–347 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Kaniadakis, G.: Non-linear kinetics underlying generalized statistics. Phys. A 296(3–4), 405–425 (2001)

    Article  MathSciNet  Google Scholar 

  10. Kaniadakis, G.: Statistical mechanics in the context of special relativity. Phys. Rev. E 66, 056, 125 1–17 (2002)

    Google Scholar 

  11. Kaniadakis, G.: Statistical mechanics in the context of special relativity. ii. Phys. Rev. E 72(3), 036,108 (2005). https://doi.org/10.1103/PhysRevE.72.036108

  12. Kass, R.E., Vos, P.W.: Geometrical Foundations of Asymptotic Inference. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York (1997). https://doi.org/10.1002/9781118165980. A Wiley-Interscience Publication

    Book  Google Scholar 

  13. Landau, L.D., Lifshits, E.M.: Course of Theoretical Physics. Statistical Physics, vol. V, 3rd edn. Butterworth-Heinemann, Oxford (1980)

    Google Scholar 

  14. Loaiza, G., Quiceno, H.R.: A \(q\)-exponential statistical Banach manifold. J. Math. Anal. Appl. 398(2), 466–476 (2013). https://doi.org/10.1016/j.jmaa.2012.08.046

    Article  MathSciNet  Google Scholar 

  15. Malliavin, P.: Integration and Probability. Graduate Texts in Mathematics, vol. 157. Springer-Verlag (1995). With the collaboration of Hlne Airault, Leslie Kay and Grard Letac. Edited and translated from the French by Kay, With a foreword by Mark Pinsky

    Google Scholar 

  16. Montrucchio, L., Pistone, G.: Deformed exponential bundle: the linear growth case. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information. LNCS, vol. 10589, pp. 239–246. Springer (2017). Proceedings of the Third International Conference, GSI 2017, Paris, France, November 7–9

    Google Scholar 

  17. Naudts, J.: Generalised Thermostatistics. Springer-Verlag London Ltd. (2011). https://doi.org/10.1007/978-0-85729-355-8

    Book  Google Scholar 

  18. Newton, N.J.: An infinite-dimensional statistical manifold modelled on Hilbert space. J. Funct. Anal. 263(6), 1661–1681 (2012). https://doi.org/10.1016/j.jfa.2012.06.007

    Article  MathSciNet  Google Scholar 

  19. Newton, N.J.: Infinite-dimensional statistical manifolds based on a balanced chart. Bernoulli 22(2), 711–731 (2016). https://doi.org/10.3150/14-BEJ673

    Article  MathSciNet  Google Scholar 

  20. Pistone, G.: \(\kappa \)-exponential models from the geometrical viewpoint. Eur. Phys. J. B Condens. Matter Phys. 71(1), 29–37 (2009). https://doi.org/10.1140/epjb/e2009-00154-y

    Article  Google Scholar 

  21. Pistone, G.: Nonparametric information geometry. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information. Lecture Notes in Computer Science, vol. 8085, pp. 5–36. Springer, Heidelberg (2013). Proceedings First International Conference, GSI 2013 Paris, France, August 28–30

    Google Scholar 

  22. Pistone, G., Rogantin, M.: The exponential statistical manifold: mean parameters, orthogonality and space transformations. Bernoulli 5(4), 721–760 (1999)

    Article  MathSciNet  Google Scholar 

  23. Pistone, G., Sempi, C.: An infinite-dimensional geometric structure on the space of all the probability measures equivalent to a given one. Ann. Stat. 23(5), 1543–1561 (1995)

    Article  MathSciNet  Google Scholar 

  24. Shima, H.: The Geometry of Hessian Structures. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2007). https://doi.org/10.1142/9789812707536

  25. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52(1–2), 479–487 (1988)

    Article  MathSciNet  Google Scholar 

  26. Vigelis, R.F., Cavalcante, C.C.: On \(\phi \)-families of probability distributions. J. Theor. Probab. 26, 870–884 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The Authors wish to thank the anonymous referees whose comments have led to a considerable improvement of the paper. L. Montrucchio is Honorary Fellow of the Collegio Carlo Alberto Foundation. G. Pistone is a member of GNAMPA-INdAM and acknowledges the support of de Castro Statistics and Collegio Carlo Alberto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Pistone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Montrucchio, L., Pistone, G. (2019). A Class of Non-parametric Deformed Exponential Statistical Models. In: Nielsen, F. (eds) Geometric Structures of Information. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-02520-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02520-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02519-9

  • Online ISBN: 978-3-030-02520-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics