Skip to main content

Clustering in Hilbert’s Projective Geometry: The Case Studies of the Probability Simplex and the Elliptope of Correlation Matrices

  • Chapter
  • First Online:
Geometric Structures of Information

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Clustering categorical distributions in the probability simplex is a fundamental task met in many applications dealing with normalized histograms. Traditionally, differential-geometric structures of the probability simplex have been used either by (i) setting the Riemannian metric tensor to the Fisher information matrix of the categorical distributions, or (ii) defining the dualistic information-geometric structure induced by a smooth dissimilarity measure, the Kullback–Leibler divergence. In this work, we introduce for this clustering task a novel computationally-friendly framework for modeling the probability simplex termed Hilbert simplex geometry. In the Hilbert simplex geometry, the distance function is described by a polytope. We discuss the pros and cons of those different statistical modelings, and benchmark experimentally these geometries for center-based k-means and k-center clusterings. Furthermore, since a canonical Hilbert metric distance can be defined on any bounded convex subset of the Euclidean space, we also consider Hilbert’s projective geometry of the elliptope of correlation matrices and study its clustering performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To contrast with this result, let us mention that infinitesimal small balls in Riemannian geometry have Euclidean ellipsoidal shapes (visualized as Tissot’s indicatrix in cartography).

  2. 2.

    For positive values a and b, the arithmetic-geometric mean inequality states that \(\sqrt{ab}\le \frac{a+b}{2}\).

  3. 3.

    Consider \(A = (1/3,1/3,1/3)\), \(B = (1/6,1/2,1/3)\), \(C = (1/6,2/3,1/6)\) and \(D = (1/3,1/2,1/6)\). Then \(2AB^2 +2BC^2 = 4.34\) but \(AC^2 + BD^2 = 3.84362411135\).

References

  1. Agresti, A.: Categorical Data Analysis, vol. 482. Wiley, New Jercy (2003)

    MATH  Google Scholar 

  2. Aggarwal, C.C., Zhai, C.X.: Mining Text Data. Springer Publishing Company, Berlin (2012)

    Book  Google Scholar 

  3. Messing, R., Pal, C., Kautz, H.: Activity recognition using the velocity histories of tracked keypoints. In: International Conference on Computer Vision, pp. 104–111. IEEE (2009)

    Google Scholar 

  4. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  5. Chaudhuri, K., McGregor, A.: Finding metric structure in information theoretic clustering. In: Conference on Learning Theory (COLT), pp. 391–402 (2008)

    Google Scholar 

  6. Lebanon, G.: Learning Riemannian metrics. In: Conference on Uncertainty in Artificial Intelligence (UAI), pp. 362–369 (2002)

    Google Scholar 

  7. Rigouste, L., Cappé, O., Yvon, F.: Inference and evaluation of the multinomial mixture model for text clustering. Inf. Process. Manag. 43(5), 1260–1280 (2007)

    Article  Google Scholar 

  8. Huang, Z.: Extensions to the \(k\)-means algorithm for clustering large data sets with categorical values. Data Min. Knowl. Discov. 2(3), 283–304 (1998)

    Article  MathSciNet  Google Scholar 

  9. Arthur, D., Vassilvitskii, S.: \(k\)-means++: the advantages of careful seeding. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1027–1035 (2007)

    Google Scholar 

  10. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)

    Article  MathSciNet  Google Scholar 

  11. Tropp, J.A.: Simplicial faces of the set of correlation matrices. Discret. Comput. Geom. 60(2), 512–529 (2018)

    Article  MathSciNet  Google Scholar 

  12. Kass, R.E., Vos, P.W.: Geometrical Foundations of Asymptotic Inference. Wiley Series in Probability and Statistics. Wiley-Interscience, New Jercy (1997)

    Book  Google Scholar 

  13. Hotelling, H.: Spaces of statistical parameters. Bull. Amer. Math. Soc. 36, 191 (1930)

    MATH  Google Scholar 

  14. Rao, C.R.: Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37(3), 81–91 (1945)

    MathSciNet  MATH  Google Scholar 

  15. Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters. Breakthroughs in Statistics, pp. 235–247. Springer, New York (1992)

    Chapter  Google Scholar 

  16. Stigler, S.M.: The epic story of maximum likelihood. Stat. Sci. 22(4), 598–620 (2007)

    Article  MathSciNet  Google Scholar 

  17. Amari, Si: Information Geometry and Its Applications. Applied Mathematical Sciences, vol. 194. Springer, Japan (2016)

    MATH  Google Scholar 

  18. Calin, O., Udriste, C.: Geometric Modeling in Probability and Statistics. Mathematics and Statistics. Springer International Publishing, New York (2014)

    Book  Google Scholar 

  19. Amari, Si, Cichocki, A.: Information geometry of divergence functions. Bull. Pol. Acad. Sci.: Tech. Sci. 58(1), 183–195 (2010)

    Google Scholar 

  20. Shima, H.: The Geometry of Hessian Structures. World Scientific, Singapore (2007)

    Book  Google Scholar 

  21. Liang, X.: A note on divergences. Neural Comput. 28(10), 2045–2062 (2016)

    Article  Google Scholar 

  22. Jenssen, R., Principe, J.C., Erdogmus, D., Eltoft, T.: The Cauchy–Schwarz divergence and Parzen windowing: connections to graph theory and mercer kernels. J. Frankl. Inst. 343(6), 614–629 (2006)

    Article  MathSciNet  Google Scholar 

  23. Hilbert, D.: Über die gerade linie als kürzeste verbindung zweier punkte. Mathematische Annalen 46(1), 91–96 (1895)

    Article  Google Scholar 

  24. Busemann, H.: The Geometry of Geodesics. Pure and Applied Mathematics, vol. 6. Elsevier Science, Amsterdam (1955)

    MATH  Google Scholar 

  25. de la Harpe, P.: On Hilbert’s metric for simplices. Geometric Group Theory, vol. 1, pp. 97–118. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  26. Lemmens, B., Nussbaum, R.: Birkhoff’s version of Hilbert’s metric and its applications in analysis. Handbook of Hilbert Geometry, pp. 275–303 (2014)

    Google Scholar 

  27. Richter-Gebert, J.: Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry. Springer, Berlin (2011)

    Book  Google Scholar 

  28. Bi, Y., Fan, B., Wu, F.: Beyond Mahalanobis metric: Cayley–Klein metric learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2339–2347 (2015)

    Google Scholar 

  29. Nielsen, F., Muzellec, B., Nock, R.: Classification with mixtures of curved Mahalanobis metrics. In: IEEE International Conference on Image Processing (ICIP), pp. 241–245 (2016)

    Google Scholar 

  30. Nielsen, F., Muzellec, B., Nock, R.: Large margin nearest neighbor classification using curved Mahalanobis distances (2016). arXiv:1609.07082 [cs.LG]

  31. Stillwell, J.: Ideal elements in Hilbert’s geometry. Perspect. Sci. 22(1), 35–55 (2014)

    Article  MathSciNet  Google Scholar 

  32. Bernig, A.: Hilbert geometry of polytopes. Archiv der Mathematik 92(4), 314–324 (2009)

    Article  MathSciNet  Google Scholar 

  33. Nielsen, F., Sun, K.: Clustering in Hilbert simplex geometry. CoRR arXiv: abs/1704.00454 (2017)

  34. Nielsen, F., Shao, L.: On balls in a polygonal Hilbert geometry. In: 33st International Symposium on Computational Geometry (SoCG 2017). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2017)

    Google Scholar 

  35. Laidlaw, D.H., Weickert, J.: Visualization and Processing of Tensor Fields: Advances and Perspectives. Mathematics and Visualization. Springer, Berlin (2009)

    Book  Google Scholar 

  36. Lemmens, B., Walsh, C.: Isometries of polyhedral Hilbert geometries. J. Topol. Anal. 3(02), 213–241 (2011)

    Article  MathSciNet  Google Scholar 

  37. Condat, L.: Fast projection onto the simplex and the \(\ell _1\) ball. Math. Program. 158(1–2), 575–585 (2016)

    Article  MathSciNet  Google Scholar 

  38. Park, P.S.: Regular polytopic distances. Forum Geom. 16, 227–232 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Boissonnat, J.D., Sharir, M., Tagansky, B., Yvinec, M.: Voronoi diagrams in higher dimensions under certain polyhedral distance functions. Discret. Comput. Geom. 19(4), 485–519 (1998)

    Article  MathSciNet  Google Scholar 

  40. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  41. Nielsen, F.: Cramér–Rao lower bound and information geometry. Connected at Infinity II, pp. 18–37. Springer, Berlin (2013)

    Chapter  Google Scholar 

  42. Chapman, D.G.: Minimum variance estimation without regularity assumptions. Ann. Math. Stat. 22(4), 581–586 (1951)

    Article  MathSciNet  Google Scholar 

  43. Hammersley, H.: On estimating restricted parameters. J. R. Stat. Society. Ser. B (Methodol.) 12(2), 192–240 (1950)

    MathSciNet  MATH  Google Scholar 

  44. Nielsen, F., Sun, K.: On Hölder projective divergences. Entropy 19(3), 122 (2017)

    Article  Google Scholar 

  45. Nielsen, F., Nock, R.: Further heuristics for \(k\)-means: the merge-and-split heuristic and the \((k,l)\)-means. arXiv:1406.6314 (2014)

  46. Bachem, O., Lucic, M., Hassani, S.H., Krause, A.: Approximate \(k\)-means++ in sublinear time. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 1459–1467 (2016)

    Google Scholar 

  47. Nielsen, F., Nock, R.: Total Jensen divergences: definition, properties and \(k\)-means++ clustering (2013). arXiv:1309.7109 [cs.IT]

  48. Ackermann, M.R., Blömer, J.: Bregman clustering for separable instances. Scandinavian Workshop on Algorithm Theory, pp. 212–223. Springer, Berlin (2010)

    Google Scholar 

  49. Manthey, B., Röglin, H.: Worst-case and smoothed analysis of \(k\)-means clustering with Bregman divergences. J. Comput. Geom. 4(1), 94–132 (2013)

    MathSciNet  MATH  Google Scholar 

  50. Endo, Y., Miyamoto, S.: Spherical \(k\)-means++ clustering. Modeling Decisions for Artificial Intelligence, pp. 103–114. Springer, Berlin (2015)

    Chapter  Google Scholar 

  51. Nielsen, F., Nock, R., Amari, Si: On clustering histograms with \(k\)-means by using mixed \(\alpha \)-divergences. Entropy 16(6), 3273–3301 (2014)

    Article  MathSciNet  Google Scholar 

  52. Brandenberg, R., König, S.: No dimension-independent core-sets for containment under homothetics. Discret. Comput. Geom. 49(1), 3–21 (2013)

    Article  MathSciNet  Google Scholar 

  53. Panigrahy, R.: Minimum enclosing polytope in high dimensions (2004). arXiv:cs/0407020 [cs.CG]

  54. Saha, A., Vishwanathan, S., Zhang, X.: New approximation algorithms for minimum enclosing convex shapes. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1146–1160 (2011)

    Chapter  Google Scholar 

  55. Nielsen, F., Nock, R.: On the smallest enclosing information disk. Inf. Process. Lett. 105(3), 93–97 (2008)

    Article  MathSciNet  Google Scholar 

  56. Sharir, M., Welzl, E.: A combinatorial bound for linear programming and related problems. STACS 92, 567–579 (1992)

    Google Scholar 

  57. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). New Results and New trends in Computer Science, pp. 359–370. Springer, Berlin (1991)

    Chapter  Google Scholar 

  58. Nielsen, F., Nock, R.: Approximating smallest enclosing balls with applications to machine learning. Int. J. Comput. Geom. Appl. 19(05), 389–414 (2009)

    Article  MathSciNet  Google Scholar 

  59. Arnaudon, M., Nielsen, F.: On approximating the Riemannian \(1\)-center. Comput. Geom. 46(1), 93–104 (2013)

    Article  MathSciNet  Google Scholar 

  60. Bâdoiu, M., Clarkson, K.L.: Smaller core-sets for balls. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 801–802 (2003)

    Google Scholar 

  61. Nielsen, F., Hadjeres, G.: Approximating covering and minimum enclosing balls in hyperbolic geometry. International Conference on Networked Geometric Science of Information, pp. 586–594. Springer, Cham (2015)

    Chapter  Google Scholar 

  62. Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Comput. Geom. 40(1), 14–22 (2008)

    Article  MathSciNet  Google Scholar 

  63. Bachem, O., Lucic, M., Krause, A.: Scalable and distributed clustering via lightweight coresets (2017). arXiv:1702.08248 [stat.ML]

  64. Nielsen, F., Nock, R.: On approximating the smallest enclosing Bregman balls. In: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, pp. 485–486. ACM (2006)

    Google Scholar 

  65. Nock, R., Nielsen, F.: Fitting the smallest enclosing Bregman ball. ECML, pp. 649–656. Springer, Berlin (2005)

    Google Scholar 

  66. Deza, M., Sikirić, M.D.: Voronoi polytopes for polyhedral norms on lattices. Discret. Appl. Math. 197, 42–52 (2015)

    Article  MathSciNet  Google Scholar 

  67. Körner, M.C.: Minisum hyperspheres, Springer Optimization and Its Applications, vol. 51. Springer, New York (2011)

    Book  Google Scholar 

  68. Reem, D.: The geometric stability of Voronoi diagrams in normed spaces which are not uniformly convex (2012). arXiv:1212.1094 [cs.CG]

  69. Foertsch, T., Karlsson, A.: Hilbert metrics and Minkowski norms. J. Geom. 83(1–2), 22–31 (2005)

    Article  MathSciNet  Google Scholar 

  70. Cencov, N.N.: Statistical Decision Rules and Optimal Inference. Translations of Mathematical Monographs, vol. 53. American Mathematical Society, Providence (2000)

    Google Scholar 

  71. Cena, A.: Geometric structures on the non-parametric statistical manifold. Ph.D. thesis, University of Milano (2002)

    Google Scholar 

  72. Shen, Z.: Riemann-Finsler geometry with applications to information geometry. Chin. Ann. Math. Ser. B 27(1), 73–94 (2006)

    Article  MathSciNet  Google Scholar 

  73. Khosravifard, M., Fooladivanda, D., Gulliver, T.A.: Confliction of the convexity and metric properties in \(f\)-divergences. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 90(9), 1848–1853 (2007)

    Article  Google Scholar 

  74. Dowty, J.G.: Chentsov’s theorem for exponential families (2017). arXiv:1701.08895 [math.ST]

  75. Doup, T.M.: Simplicial Algorithms on the Simplotope, vol. 318. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  76. Vernicos, C.: Introduction aux géométries de Hilbert. Séminaire de théorie spectrale et géométrie 23, 145–168 (2004)

    Article  MathSciNet  Google Scholar 

  77. Arnaudon, M., Nielsen, F.: Medians and means in Finsler geometry. LMS J. Comput. Math. 15, 23–37 (2012)

    Article  MathSciNet  Google Scholar 

  78. Papadopoulos, A., Troyanov, M.: From Funk to Hilbert geometry (2014). arXiv:1406.6983 [math.MG]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Nielsen .

Editor information

Editors and Affiliations

Appendices

8 Isometry of Hilbert Simplex Geometry to a Normed Vector Space

Consider the Hilbert simplex metric space \((\varDelta ^d,\rho _\mathrm {HG})\) where \(\varDelta ^d\) denotes the d-dimensional open probability simplex and \(\rho _\mathrm {HG}\) the Hilbert cross-ratio metric. Let us recall the isometry ([25], 1991) of the open standard simplex to a normed vector space \((V^d,\Vert \cdot \Vert _\mathrm {NH})\). Let \(V^d=\{v\in \mathbb {R}^{d+1} \ :\ \sum _i v^i=0\}\) denote the d-dimensional vector space sitting in \(\mathbb {R}^{d+1}\). Map a point \(p=(\lambda ^0,\ldots ,\lambda ^{d})\in \varDelta ^d\) to a point \(v(x)=(v^0,\ldots , v^{d})\in V^d\) as follows:

$$\begin{aligned} v^i = \frac{1}{d+1} \left( d\log \lambda ^i -\sum _{j\ne {i}}\log \lambda ^j \right) = \log \lambda ^i - \frac{1}{d+1}\sum _j \log \lambda ^j. \end{aligned}$$

We define the corresponding norm \(\Vert \cdot \Vert _\mathrm {NH}\) in \(V^d\) by considering the shape of its unit ball \(B_V=\{v\in V^d \ :\ |v^i-v^j|\le 1, \forall i\not =j\}\). The unit ball \(B_V\) is a symmetric convex set containing the origin in its interior, and thus yields a polytope norm \(\Vert \cdot \Vert _\mathrm {NH}\) (Hilbert norm) with \(2\left( {\begin{array}{c}d+1\\ 2\end{array}}\right) =d(d+1)\) facets. Reciprocally, let us notice that a norm induces a unit ball centered at the origin that is convex and symmetric around the origin.

The distance in the normed vector space between \(v\in V^d\) and \(v'\in V^d\) is defined by:

$$\begin{aligned} \rho _V(v,v')= \Vert v-v'\Vert _\mathrm {NH}= \inf \left\{ \tau \ :\ v'\in \tau (B_V\oplus \{v\}) \right\} , \end{aligned}$$

where \(A\oplus B=\{a+b \ :\ a\in A,b\in B\}\) is the Minkowski sum.

The reverse map from the normed space \(V^d\) to the probability simplex \(\varDelta ^d\) is given by:

$$\begin{aligned} \lambda ^i = \frac{\exp ({v^i})}{\sum _j \exp (v^j)}. \end{aligned}$$

Thus we have \((\varDelta ^d,\rho _\mathrm {HG})\cong (V^d,\Vert \cdot \Vert _\mathrm {NH})\). In 1D, \((V^1,\Vert \cdot \Vert _\mathrm {NH})\) is isometric to the Euclidean line.

Note that computing the distance in the normed vector space requires naively \(O(d^2)\) time.

Unfortunately, the norm \(\Vert \cdot \Vert _\mathrm {NH}\) does not satisfy the parallelogram law.Footnote 3 Notice that a norm satisfying the parallelogram law can be associated with an inner product via the polarization identity. Thus the isometry of the Hilbert geometry to a normed vector space is not equipped with an inner product. However, all norms in a finite dimensional space are equivalent. This implies that in finite dimension, \((\varDelta ^d,\rho _\mathrm {HG})\) is quasi-isometric to the Euclidean space \(\mathbb {R}^d\). An example of Hilbert geometry in infinite dimension is reported in [25]. Hilbert spaces are not CAT spaces except when \(\mathscr {C}\) is an ellipsoid [76].

9 Hilbert Geometry with Finslerian/Riemannian Structures

In a Riemannian geometry, each tangent plane \(T_pM\) of a d-dimensional manifold M is equivalent to \(\mathbb {R}^d\): \(T_pM\simeq \mathbb {R}^d\). The inner product at each tangent plane \(T_pM\) can be visualized by an ellipsoid shape, a convex symmetric object centered at point p. In a Finslerian geometry, a norm \(\Vert \cdot \Vert _p\) is defined in each tangent plane \(T_pM\), and this norm is visualized as a symmetric convex object with non-empty interior. Finslerian geometry thus generalizes Riemannian geometry by taking into account generic symmetric convex objects instead of ellipsoids for inducing norms at each tangent plane. Any Hilbert geometry induced by a compact convex domain \(\mathscr {C}\) can be expressed by an equivalent Finslerian geometry by defining the norm in \(T_p\) at p as follows [76]:

$$\begin{aligned} \Vert v\Vert _p = F_\mathscr {C}(p,v) =\frac{\Vert v\Vert }{2} \left( \frac{1}{pp^+} + \frac{1}{pp^-} \right) , \end{aligned}$$

where \(F_\mathscr {C}\) is the Finsler metric, \(\Vert \cdot \Vert \) is an arbitrary norm on \(\mathbb {R}^d\), and \(p^+\) and \(p^-\) are the intersection points of the line passing through p with direction v:

$$ p^+=p+t^+v,\quad p^-=p+t^-v. $$

A geodesic \(\gamma \) in a Finslerian geometry satisfies:

$$\begin{aligned} d_\mathscr {C}(\gamma (t_1),\gamma (t_2)) = \int _{t_1}^{t_2} F_\mathscr {C}(\gamma (t),\dot{\gamma }(t)) \mathrm {d}t. \end{aligned}$$

In \(T_pM\), a ball of center c and radius r is defined by:

$$\begin{aligned} B(c,r)=\{ v \ : \ F_\mathscr {C}(c,v) \le r \}. \end{aligned}$$

Thus any Hilbert geometry induces an equivalent Finslerian geometry, and since Finslerian geometries include Riemannian geometries, one may wonder which Hilbert geometries induce Riemannian structures? The only Riemannian geometries induced by Hilbert geometries are the hyperbolic Cayley–Klein geometries [27, 29, 30] with the domain \(\mathscr {C}\) being an ellipsoid. The Finslerian modeling of information geometry has been studied in [71, 72].

There is not a canonical way of defining measures in a Hilbert geometry since Hilbert geometries are Finslerian but not necessary Riemannian geometries [76]. The Busemann measure is defined according to the Lebesgue measure \(\lambda \) of \(\mathbb {R}^d\): Let \(B_p\) denote the unit ball wrt. to the Finsler norm at point \(p\in \mathscr {C}\), and \(B_e\) the Euclidean unit ball. Then the Busemann measure for a Borel set \(\mathscr {B}\) is defined by [76]:

$$ \mu _\mathscr {C}(\mathscr {B}) = \int _\mathscr {B}\frac{\lambda (B_e)}{\lambda (B_p)} \mathrm {d}\lambda (p). $$

The existence and uniqueness of center points of a probability measure in Finsler geometry have been investigated in [77].

10 Bounding Hilbert Norm with Other Norms

Let us show that \(\Vert v\Vert _\mathrm {NH}\le \beta _{d,c} \Vert v\Vert _c\), where \(\Vert \cdot \Vert _c\) is any norm. Let \(v=\sum _{i=0}^{d} e_i x_i\), where \(\{e_i\}\) is a basis of \(\mathbb {R}^{d+1}\). We have:

$$ \Vert v\Vert _c \le \sum _{i=0}^{d} |x_i| \Vert e_i\Vert _c \le \Vert x\Vert _2 \underbrace{\sqrt{\sum _{i=0}^{d} \Vert e_i\Vert ^2_c}}_{\beta _d}, $$

where the first inequality comes from the triangle inequality, and the second inequality is from the Cauchy–Schwarz inequality. Thus we have:

$$ \Vert v\Vert _\mathrm {NH}\le \beta _d \Vert x\Vert _2, $$

with \(\beta _d=\sqrt{d+1}\) since \(\Vert e_i\Vert _\mathrm {NH}\le 1\).

Let \(\alpha _{d,c}=\min _{\{v \ :\ \Vert v\Vert _c = 1\}} \Vert v\Vert _\mathrm {NH}\). Consider \(u=\frac{v}{\Vert v\Vert _c}\). Then \(\Vert u\Vert _c=1\) so that \(\Vert v\Vert _\mathrm {NH}\ge \alpha _{d,c} \Vert v\Vert _c\). To find \(\alpha _d\), we consider the unit \(\ell _2\) ball in \(V^d\), and find the smallest \(\lambda >0\) so that \(\lambda B_V\) fully contains the Euclidean ball (Fig. 14).

Fig. 14
figure 14

Polytope balls \(B_V\) and the Euclidean unit ball \(B_E\). From the figure the smallest polytope ball has radius \(\approx 1.5\)

Therefore, we have overall:

$$ \alpha _d \Vert x\Vert _2 \le \Vert v\Vert _\mathrm {NH}\le \sqrt{d+1} \Vert x\Vert _2 $$

In general, note that we may consider two arbitrary norms \(\Vert \cdot \Vert _l\) and \(\Vert \cdot \Vert _u\) so that:

$$ \alpha _{d,l} \Vert x\Vert _l \le \Vert v\Vert _\mathrm {NH}\le \beta _{d,u} \Vert x\Vert _u. $$

11 Funk Directed Metrics and Funk Balls

The Funk metric [78] wrt a convex domain \(\mathscr {C}\) is defined by

$$ F_\mathscr {C}(x,y) = \log \left( \frac{\Vert x-a\Vert }{\Vert y-a\Vert } \right) , $$

where a is the intersection of the domain boundary and the affine ray R(xy) starting from x and passing through y. Correspondingly, the reverse Funk metric is

$$ F_\mathscr {C}(y,x) = \log \left( \frac{\Vert y-b\Vert }{\Vert x-b\Vert } \right) , $$

where b is the intersection of R(yx) with the boundary. The Funk metric is not a metric distance.

The Hilbert metric is simply the arithmetic symmetrization:

$$ H_\mathscr {C}(x,y)=\frac{F_\mathscr {C}(x,y)+F_\mathscr {C}(y,x)}{2}. $$

It is interesting to explore clustering based on the Funk geometry, which we leave as a future work.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nielsen, F., Sun, K. (2019). Clustering in Hilbert’s Projective Geometry: The Case Studies of the Probability Simplex and the Elliptope of Correlation Matrices. In: Nielsen, F. (eds) Geometric Structures of Information. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-02520-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02520-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02519-9

  • Online ISBN: 978-3-030-02520-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics