Skip to main content

Convergence of an Operator Splitting Scheme for Abstract Stochastic Evolution Equations

  • Chapter
  • First Online:

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 41))

Abstract

In this paper, we study the convergence of a Lie-Trotter operator splitting for stochastic semilinear evolution equations in a Hilbert space. The abstract Hilbert space setting allows for the consideration of convergence of the approximation for both the original and spatially discretized problems. It is known that the strong convergence of this scheme is classically of half-order, at best. We demonstrate that this is in fact the optimal order of convergence in the proposed setting, with the actual order being dependent upon the regularity of noise collected from applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blanes, S., Casas, F.: A concise introduction to geometrical numerical integration, 1st edn. CRC Press (2016)

    Google Scholar 

  2. Burrage, K., Burrage, P.M.: High strong order methods for non-commutative stochastic differential equations systems and the Magnus formula. Physica D: Nonlinear Phenomena 133(1), 34–48 (1999)

    Article  MathSciNet  Google Scholar 

  3. Casas, F., Iserles, A.: Explicit Magnus expansions for nonlinear equations. Journal of Physics A: Mathematical and General 39(19), 5445 (2006). URL http://stacks.iop.org/0305-4470/39/i=19/a=S07

    Article  MathSciNet  Google Scholar 

  4. Chow, P.L.: Stochastic partial differential equations. CRC Press (2014)

    Google Scholar 

  5. Cox, S., Van Neerven, J.: Convergence rates of the splitting scheme for parabolic linear stochastic Cauchy problems. SIAM Journal on Numerical Analysis 48(2), 428–451 (2010)

    Article  MathSciNet  Google Scholar 

  6. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, 2 edn. Encyclopedia of Mathematics and its Applications. Cambridge University Press (2014). DOI 10.1017/CBO9781107295513

    Google Scholar 

  7. Debussche, A.: Weak approximation of stochastic partial differential equations: the nonlinear case. Mathematics of Computation 80(273), 89–117 (2011)

    Article  MathSciNet  Google Scholar 

  8. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-preserving algorithms for ordinary differential equations, vol. 31. Springer Science & Business Media (2006)

    Google Scholar 

  9. Hansen, E., Kramer, F., Ostermann, A.: A second-order positivity preserving scheme for semilinear parabolic problems. Applied Numerical Mathematics 62(10), 1428–1435 (2012)

    Article  MathSciNet  Google Scholar 

  10. Hansen, E., Ostermann, A.: Dimension splitting for evolution equations. Numerische Mathematik 108(4), 557–570 (2008). DOI 10.1007/s00211-007-0129-3. URL https://doi.org/10.1007/s00211-007-0129-3

    Article  MathSciNet  MATH  Google Scholar 

  11. Henry, D.: Geometric theory of semilinear parabolic equations, vol. 840. Springer (2006)

    Google Scholar 

  12. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations, 2 edn. Cambridge Texts in Applied Mathematics. Cambridge University Press (2008). DOI 10.1017/CBO9780511995569

    Google Scholar 

  13. Jahnke, T., Lubich, C.: Error bounds for exponential operator splittings. BIT Numerical Mathematics 40(4), 735–744 (2000)

    Article  MathSciNet  Google Scholar 

  14. Kato, T.: Nonlinear semigroups and evolution equations. Journal of the Mathematical Society of Japan 19(4), 508–520 (1967)

    Article  MathSciNet  Google Scholar 

  15. Lord, G.J., Tambue, A.: Stochastic exponential integrators for the finite element discretization of SPDEs for multiplicative and additive noise. IMA Journal of Numerical Analysis 33(2), 515–543 (2012)

    Article  MathSciNet  Google Scholar 

  16. Malham, S.J.A., Wiese, A.: Stochastic Lie group integrators. SIAM J. Sci. Comput. 30(2), 597–617 (2008)

    Article  MathSciNet  Google Scholar 

  17. Misawa, T.: Numerical integration of stochastic differential equations by composition methods. Sūrikaisekikenkyūsho Kōkyūroku 1180, 166–190 (2000) [Dynamical systems and differential geometry (Japanese) (Kyoto, 2000)]

    Google Scholar 

  18. Misawa, T.: A Lie algebraic approach to numerical integration of stochastic differential equations. SIAM J. Sci. Comput. 23(3), 866–890 (2006)

    Article  MathSciNet  Google Scholar 

  19. Padgett, J.L., Sheng, Q.: Modern Mathematical Methods and High Performance Computing in Science and Technology, chap. On the Stability of a Variable Step Exponential Splitting Method for Solving Multidimensional Quenching-Combustion Equations, pp. 155–167. Springer (2016)

    Google Scholar 

  20. Padgett, J.L., Sheng, Q.: On the positivity, monotonicity, and stability of a semi-adaptive LOD method for solving three-dimensional degenerate Kawarada equations. J. Math. Anal. Appls 439, 465–480 (2016)

    Article  MathSciNet  Google Scholar 

  21. Padgett, J.L., Sheng, Q.: Numerical solution of degenerate stochastic Kawarada equations via a semi-discretized approach. Applied Mathematics and Computation 325, 210–226 (2018). DOI https://doi.org/10.1016/j.amc.2017.12.034. URL https://www.sciencedirect.com/science/article/pii/S0096300317308937

    Article  MathSciNet  Google Scholar 

  22. Prévôt, C., Röckner, M.: A concise course on stochastic partial differential equations, vol. 1905. Springer (2007)

    Google Scholar 

  23. Sheng, Q.: Solving linear partial differential equations by exponential splitting. IMA Journal of numerical analysis 9(2), 199–212 (1989)

    Article  MathSciNet  Google Scholar 

  24. Sheng, Q.: Global error estimates for exponential splitting. IMA Journal of Numerical Analysis 14(1), 27–56 (1994)

    Article  MathSciNet  Google Scholar 

  25. Trotter, H.: On the product of semi-groups of operators. Proceedings of the American Mathematical Society 10(4), 545–551 (1959)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua L. Padgett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Padgett, J.L., Sheng, Q. (2019). Convergence of an Operator Splitting Scheme for Abstract Stochastic Evolution Equations. In: Singh, V., Gao, D., Fischer, A. (eds) Advances in Mathematical Methods and High Performance Computing. Advances in Mechanics and Mathematics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-02487-1_9

Download citation

Publish with us

Policies and ethics