Skip to main content

Regularization of Highly Ill-Conditioned RBF Asymmetric Collocation Systems in Fractional Models

  • Chapter
  • First Online:
Advances in Mathematical Methods and High Performance Computing

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 41))

  • 1046 Accesses

Abstract

While attempting to approximate differential equations using Kansa’s radial basis function (RBF) collocation, we need to solve a non-symmetric, highly ill-conditioned system. There are many attempts to evaluate RBF interpolant in a more stable manner using approaches like Laurent series expansion, regularization, QR algorithms, etc. In this article, we modify the regularization method and obtain regularization parameter that reduces the ill-conditioning and provide stable solutions for fractional differential equations using Kansa’s asymmetric collocation. Numerical results are provided to illustrate the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Arghand and M. Amirfakhrian: A meshless method based on the fundamental solution and radial basis function for solving an inverse heat conduction problem. Adv. Math. Phys., pages Art. ID 256726, 8, (2015).

    Google Scholar 

  2. A. Ben-Israel and T. N. Greville: Generalized Inverses: Theory and Applications, volume 15. Springer Science & Business Media, (2003).

    Google Scholar 

  3. J. P. Boyd and K. W. Gildersleeve: Numerical experiments on the condition number of the interpolation matrices for radial basis functions. Appl. Numer. Math., 61(4), 443–459, (2011).

    Article  MathSciNet  Google Scholar 

  4. M. D. Buhmann: Radial basis functions: theory and implementations. Cambridge monographs on applied and computational mathematics. Cambridge University Press, Cambridge, New York, (2003).

    Book  Google Scholar 

  5. S. K. Damarla and M. Kundu: Numerical solution of multi-order fractional differential equations using generalized triangular function operational matrices. Appl. Math. Comput., 263, 189–203, (2015).

    MathSciNet  MATH  Google Scholar 

  6. M. Di Paola, F. P. Pinnola, and M. Zingales: Fractional differential equations and related exact mechanical models. Comput. Math. Appl., 66(5), 608–620, (2013).

    Article  MathSciNet  Google Scholar 

  7. B. Fakhr Kazemi and F. Ghoreishi: Error estimate in fractional differential equations using multiquadratic radial basis functions. J. Comput. Appl. Math., 245, 133–147, (2013).

    Article  MathSciNet  Google Scholar 

  8. G. E. Fasshauer and M. J. McCourt: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput., 34(2), A737–A762, (2012).

    Article  MathSciNet  Google Scholar 

  9. B. Fornberg, E. Larsson, and N. Flyer: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput., 33(2), 869–892, (2011).

    Article  MathSciNet  Google Scholar 

  10. B. Fornberg and C. Piret: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput., 30(1), 60–80, (2007/08).

    Article  MathSciNet  Google Scholar 

  11. B. Fornberg and G. Wright: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl., 48(5–6), 853–867, (2004).

    Article  MathSciNet  Google Scholar 

  12. A. Golbabai, E. Mohebianfar, and H. Rabiei: On the new variable shape parameter strategies for radial basis functions. Comput. Appl. Math., 34(2), 691–704, (2015).

    Article  MathSciNet  Google Scholar 

  13. J. F. Gómez-Aguilar, H. Yépez-Martí nez, R. F. Escobar-Jiménez, C. M. Astorga-Zaragoza, and J. Reyes-Reyes: Analytical and numerical solutions of electrical circuits described by fractional derivatives. Appl. Math. Model., 40(21–22), 9079–9094, (2016).

    Article  MathSciNet  Google Scholar 

  14. P. Gonzalez-Rodriguez, V. Bayona, M. Moscoso, and M. Kindelan: Laurent series based RBF-FD method to avoid ill-conditioning. Eng. Anal. Bound. Elem., 52, 24–31, (2015).

    Article  MathSciNet  Google Scholar 

  15. P. C. Hansen: Regularization Tools version 4.0 for Matlab 7.3. Numer. Algorithms, 46(2), 189–194, (2007).

    Article  MathSciNet  Google Scholar 

  16. J.-H. He: Application of homotopy perturbation method to nonlinear wave equations. Chaos. Soliton. Fract., 26(3), 695–700, (2005).

    Article  MathSciNet  Google Scholar 

  17. X. Hei, W. Chen, G. Pang, R. Xiao, and C. Zhang: A new visco–elasto-plastic model via time–space fractional derivative. Mech. Time-Depend. Mater., pages 1–13, (2017).

    Google Scholar 

  18. E. J. Kansa: Multiquadrics—a scattered data approximation scheme with applications to computational fluid-dynamics—II. Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl., 19(8), 147–161, (1990).

    Article  MathSciNet  Google Scholar 

  19. E. Larsson, E. Lehto, A. Heryudono, and B. Fornberg: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput., 35(4), A2096–A2119, (2013).

    Article  MathSciNet  Google Scholar 

  20. J. Lin, W. Chen, and K. Sze: A new radial basis function for Helmholtz problems. Eng. Anal. Bound. Elem., 36(12), 1923–1930, (2012).

    Article  MathSciNet  Google Scholar 

  21. J. Lin, W. Chen, and F. Wang: A new investigation into regularization techniques for the method of fundamental solutions. Math. Comput. Simulation, 81(6), 1144–1152, (2011).

    Article  MathSciNet  Google Scholar 

  22. S. Momani and Z. Odibat: Numerical approach to differential equations of fractional order. J. Comput. Appl. Math., 207(1), 96–110, (2007).

    Article  MathSciNet  Google Scholar 

  23. M. D. Paola and M. Zingales: Exact mechanical models of fractional hereditary materials. J. Rheol., 56(5), 983–1004, (2012).

    Article  Google Scholar 

  24. I. Podlubny: Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, volume 198. Academic Press, (1998).

    Google Scholar 

  25. F. A. Rihan: Numerical modeling of fractional-order biological systems. Abstr. Appl. Anal., pages Art. ID 816803, 11, (2013).

    Google Scholar 

  26. S. A. Sarra and D. Sturgill: A random variable shape parameter strategy for radial basis function approximation methods. Eng. Anal. Bound. Elem., 33(11), 1239–1245, (2009).

    Article  MathSciNet  Google Scholar 

  27. R. Schaback: Comparison of radial basis function interpolants. In Multivariate approximation: from CAGD to wavelets (Santiago, 1992), volume 3 of Ser. Approx. Decompos., pages 293–305. World Sci. Publ., River Edge, NJ, (1993).

    Google Scholar 

  28. N. H. Sweilam, A. M. Nagy, and A. A. El-Sayed: Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation. Chaos Solitons Fractals, 73, 141–147, (2015).

    Article  MathSciNet  Google Scholar 

  29. V. Turut and N. Güzel: On solving partial differential equations of fractional order by using the variational iteration method and multivariate padé approximations. Eur. J. Pure Appl. Math., 6(2), 147–171, (2013).

    MathSciNet  MATH  Google Scholar 

  30. Y.-F. Zhang and C.-J. Li: A Gaussian RBFs method with regularization for the numerical solution of inverse heat conduction problems. Inverse Probl. Sci. Eng., 24(9), 1606–1646, (2016).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Prashanthi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prashanthi, K.S., Chandhini, G. (2019). Regularization of Highly Ill-Conditioned RBF Asymmetric Collocation Systems in Fractional Models. In: Singh, V., Gao, D., Fischer, A. (eds) Advances in Mathematical Methods and High Performance Computing. Advances in Mechanics and Mathematics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-02487-1_5

Download citation

Publish with us

Policies and ethics