Skip to main content

Nonstationary Signal Decomposition for Dummies

  • Chapter
  • First Online:

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 41))

Abstract

How can I decompose a nonstationary signal? What are the advantages of using the most recent methods available in the literature versus using classical methods like (short time) Fourier transform or wavelet transform? This paper tries to address these and other questions providing the reader with a brief and self-contained survey on what and how to tackle the decomposition of nonstationary signals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    www.cicone.com, GitHub and Mathworks.

References

  1. Auger, F., Flandrin, P., Lin, Y. T., McLaughlin, S., Meignen, S. , Oberlin, T., Wu, H.-T.: Time–frequency reassignment and synchrosqueezing: An overview. IEEE Signal Processing Magazine, 30, 32–41 (2013)

    Article  Google Scholar 

  2. Bracewell, R. N., Bracewell, R. N.: The Fourier transform and its applications, McGraw-Hill, New York (1986)

    MATH  Google Scholar 

  3. Cicone, A., Dell’Acqua, P.: Study of boundary conditions in the Iterative Filtering method for the decomposition of nonstationary signals. Preprint. ArXiv 1811.07610

    Google Scholar 

  4. Cicone, A., Zhou, H.: Multidimensional iterative filtering method for the decomposition of high–dimensional non–stationary signals. Numer. Math. Theory Methods Appl., 10, 278–298 (2017). https://doi.org/10.4208/nmtma.2017.s05

    Article  MathSciNet  Google Scholar 

  5. Cicone, A., Zhou, H.: Numerical Analysis for Iterative Filtering with New Efficient Implementations Based on FFT. Submitted. ArXiv 1802.01359

    Google Scholar 

  6. Cicone, A., Liu, J., Zhou, H.: Adaptive local iterative filtering for signal decomposition and instantaneous frequency analysis. Appl. Comput. Harmon. Anal., 41, 384–411 (2016). https://doi.org/10.1016/j.acha.2016.03.001

    Article  MathSciNet  Google Scholar 

  7. Cicone, A., Liu, J., Zhou, H.: Hyperspectral chemical plume detection algorithms based on multidimensional iterative filtering decomposition. Phil. Trans. R. Soc. A: Math. Phys. Eng. Sci., 374, 20150196 (2016). https://doi.org/10.1098/rsta.2015.0196

    Article  Google Scholar 

  8. Cicone, A., Garoni, C., Serra-Capizzano, S.: Spectral and convergence analysis of the Discrete ALIF method. Submitted. http://www.it.uu.se/research/publications/reports/2017-018/

  9. Cohen, L.: Time–frequency Analysis. Prentice Hall (1995)

    Google Scholar 

  10. Daubechies, I.: Ten lectures on wavelets. SIAM (1992)

    Google Scholar 

  11. Daubechies, I., Maes, S.: A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models. Wavelets in Medicine and Biology, 527–546 (1996).

    Google Scholar 

  12. Daubechies, I., Lu, J., Wu, H.-T.: Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal., 30, 243–261 (2011)

    Article  MathSciNet  Google Scholar 

  13. Flandrin, P.: Time–frequency/time–scale analysis. Academic press (1998)

    Google Scholar 

  14. Flandrin, P., Chassande-Mottin, E., Auger, F.: Uncertainty and spectrogram geometry. Signal Processing Conference (EUSIPCO), 2012 Proceedings of the 20th European, 794–798 (2012)

    Google Scholar 

  15. Gross, R. S.: Combinations of Earth-orientation measurements: SPACE97, COMB97, and POLE97. Journal of Geodesy, 73, 627–637 (2000)

    Article  Google Scholar 

  16. Höpfner, J.: Seasonal variations in length of day and atmospheric angular momentum. Geophys. J. Int., 135, 407–437 (1998). https://doi.org/10.1046/j.1365-246X.1998.00648.x

    Article  Google Scholar 

  17. Hou, T.Y. , Shi, Z.: Adaptive data analysis via sparse time-frequency representation. Adv. in Adap. Data Anal., 3, 1–28 (2011)

    Article  MathSciNet  Google Scholar 

  18. Hou, T.Y., Yan, M.P., Wu, Z.: A variant of the EMD method for multi–scale data. Adv. in Adap. Data Anal., 1, 483–516 (2009)

    Article  MathSciNet  Google Scholar 

  19. Huang, N. E., Wu, Z.: A review on Hilbert–Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics, 46 (2008)

    Google Scholar 

  20. Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., Liu. H. H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A: Math. Phys. Eng. Sci., 454, 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  21. Huang,, N. E., Wu, M. L., Long, S. R., Shen, S. S., Qu, W. D., Gloersen, P., Fan, K. L.: A confidence limit for the position empirical mode decomposition and Hilbert spectral analysis. Proc. R. Soc. London, Ser. A, 459, 2317–2345 (2003)

    MATH  Google Scholar 

  22. Lin, L., Wang, Y., Zhou, H.: Iterative filtering as an alternative algorithm for empirical mode decomposition. Adv. Adapt. Data Anal., 1, 543–560 (2009)

    Article  MathSciNet  Google Scholar 

  23. Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G. et al.: Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436 (1999). https://doi.org/10.1038/20859.

    Article  Google Scholar 

  24. Piersanti, M. , Materassi, M., Cicone, A., Spogli, L., Zhou, H., Ezquer R. G.: Adaptive Local Iterative Filtering: a promising technique for the analysis of non-stationary signals. Journal of Geophysical Research – Space Physics. https://doi.org/10.1002/2017JA024153

    Google Scholar 

  25. Saltzman, E. S., Petit, J. R., Basile, I., Leruyuet, A., Raynaud, D., Lorius, C., Jouzel, J., Stievenard, M., Lipenkov, V. Y., Barkov, N. I., et al.: Four climate cycles in Vostok ice core. Nature, 387, 359–360 (1997). https://doi.org/10.1038/387359a0.

    Article  Google Scholar 

  26. Wu Z., Huang, N. E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal., 1, 1–41 (2009)

    Article  Google Scholar 

  27. Wu, Z. , Huang, N. E., Chen, X.: The Multi-Dimensional Ensemble Empirical Mode Decomposition Method. Advances in Adaptive Data Analysis, 1, 339–372 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author’s research was supported by Istituto Nazionale di Alta Matematica (INdAM) “INdAM Fellowships in Mathematics and/or Applications cofunded by Marie Curie Actions,” PCOFUND-GA-2009-245492 INdAM-COFUND Marie Sklodowska Curie Integration Grants.

The author is deeply grateful to Haomin Zhou, a great researcher and a wonderful person. He contributed substantially to this work and to the author career with many suggestions and pieces of advice he gave to the author over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Cicone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cicone, A. (2019). Nonstationary Signal Decomposition for Dummies. In: Singh, V., Gao, D., Fischer, A. (eds) Advances in Mathematical Methods and High Performance Computing. Advances in Mechanics and Mathematics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-02487-1_3

Download citation

Publish with us

Policies and ethics