Skip to main content

Mean Field Magnetohydrodynamic Dynamo in Partially Ionized Plasma: Nonlinear, Numerical Results

  • Chapter
  • First Online:
Advances in Mathematical Methods and High Performance Computing

Part of the book series: Advances in Mechanics and Mathematics ((AMMA,volume 41))

  • 1039 Accesses

Abstract

A magnetohydrodynamic dynamo operating in partially ionized surface and atmospheric layers of stars can produce variety of magnetic field structures. In partially ionized plasma such as in the solar photosphere and the solar chromosphere, the magnetic induction equation is subjected to the Hall drift and the ambipolar diffusion (arising due to ion-neutral collisions) along with the Ohmic dissipation. It has been found out that in the presence of a shear flow, the Hall and the ambipolar diffusion, magnetic field components can grow rapidly to form the horizontal structures with small spatial scales. The effects of nonlinear dynamo, along with a shearing flow, Hall drift, ambipolar diffusion and the density gradient can play an important role in the evolution of magnetic field in the partially ionized surface layers of cool stars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moffatt, H.K.: Magnetic field generation in electrically conducting fluids, Cambridge University Press, England (1978)

    Google Scholar 

  2. Parker, E.N.: Cosmical magnetic fields: Their origin and their activity, Oxford University Press, New York (1979)

    Google Scholar 

  3. Krishan, V., Gangadhara, R.T.: Mean – field dynamo in partially ionized plasmas - I, Mon. Not. Royal Astron. Soc., 385, 849 - 853 (2008)

    Article  Google Scholar 

  4. Singh, K.A.P., Krishan, V.: Alfvén-like mode in partially ionized solar atmosphere, New Astron., 15, 119 – 125 (2010)

    Article  Google Scholar 

  5. Singh, K.A.P., Hillier, A., Isobe, H., Shibata, K.: Nonlinear Instability and intermittent nature of magnetic reconnection in solar chromosphere, Pub. Astron. Soc. Japan, 67, 96 (1-11) (2015)

    Article  Google Scholar 

  6. Leake, J.E., Arber, T.D.: The emergence of magnetic flux through a partially ionized solar chromosphere, Astron. Astrophys., 450, 805-818 (2006)

    Google Scholar 

  7. Krishan, V., Varghese, B.A.: Cylindrical Hall-MHD waves: a nonlinear solution, Solar Phys., 247, 343-349, (2008)

    Article  Google Scholar 

  8. Krishan, V., Yoshida, Z.: Equilibrium structures in partially ionized rotating plasmas within Hall magnetohydrodynamics, Phys. Plasmas, 13, 092303 (5pp.) (2006)

    Article  Google Scholar 

  9. Brandenburg, A., Zweibel, E.G.: The formation of sharp structures by ambipolar diffusion Astrophys. J., 427, L91-L94 (1994)

    Article  Google Scholar 

  10. Schüssler, M.: Flux tubes, surface magnetism, and the solar dynamo: constraints and open problems, Astron. Nachr., 326, 194-204 (2005)

    Article  Google Scholar 

  11. Brandenburg, A.: The case for a distributed solar dynamo shaped by near-surface shear Astrophys. J., 625, 539-547 (2005)

    Google Scholar 

  12. Orozco Suaréz, D., Bellot Rubio, L.R., del Toro Iniesta, J.C., et al.: Quiet-Sun internetwork magnetic fields from the inversion of Hinode measurements, Astrophys. J., 670, L61-L64 (2007)

    Article  Google Scholar 

  13. Lites, B.W., Kubo, M., Socas-Navarro, H., et al.: The horizontal magnetic flux of the quiet-Sun internetwork as observed with the Hinode spectro-polarimeter, Astrophys. J., 672, 1237-1253 (2008)

    Article  Google Scholar 

  14. Vögler, A., Schüssler, M.: A solar surface dynamo, Astron. Astrophys., 465, L43-L46 (2007)

    Article  Google Scholar 

  15. Schüssler, M., Vögler, A.: Strong horizontal photospheric magnetic field in a surface dynamo simulation, Astron. Astrophys., 481, L5-L8 (2008)

    Article  Google Scholar 

  16. Tobias, S.M., Weiss, N.O.: The solar dynamo and tachocline (Eds. D.W. Hughes, R. Rosner, N.O. Weiss), Cambridge University Press, Cambridge, UK (2007)

    Google Scholar 

  17. Hindman, B.W., Gizon, L., Duvall, T., et al.: Comparison of solar subsurface flows assessed by ring and time-distance analyses, Astrophys. J., 613, 1253-1262 (2004)

    Google Scholar 

  18. Krause, F. and Rädler, K. H.: Mean-field magnetohydrodynamics and dynamo theory, Pergamon Press, Oxford, New York (1980)

    Chapter  Google Scholar 

  19. Stix, M.: Non-linear dynamo waves, Astron. Astrophys., 20, 9-12 (1972)

    Google Scholar 

  20. Schüssler, M.: The Sun, a laboratory for astrophysics (Eds. J.T. Schmelz, J. C. Brown), Kluwer Academic Publishers, Netharlands, 191 (1992)

    Google Scholar 

  21. de Wijn, A.G., Stenflo, J.O., Solanki, S.K., Tsuneta, S.: Small-scale solar magnetic fields, Space Science Rev., 144, 275-315 (2009)

    Google Scholar 

  22. Pietarila Graham, J., Danilovic, S., Schüssler, M.: Turbulent magnetic fields in the quiet Sun: implications of Hinode observations and small-scale dynamo simulations, Astrophys. J., 693, 1728-1735 (2009)

    Article  Google Scholar 

  23. Lites, B.W.: Hinode observations suggesting the presence of a local small-scale turbulent dynamo, Astrophys. J., 737, 52 (9pp.) (2011)

    Article  Google Scholar 

  24. Mininni, P. D., Gómez, D.O., Mahajan, S. M.: Role of the Hall current in magnetohydrodynamic dynamos, Astrophys. J., 584, 1120-1126 (2003)

    Article  Google Scholar 

  25. Gómez, D.O., Mininni, P.D., Dmitruk, P.: Hall-magnetohydrodynamic small-scale dynamos, Physical Rev. E, 82, 036406 (10pp.) (2010)

    Google Scholar 

  26. Mininni, P. D., Gómez, D.O., Mahajan, S. M.: Dynamo action in magnetohydrodynamics and Hall-magnetohydrodynamics, Astrophys. J., 587, 472-481 (2003)

    Article  Google Scholar 

  27. Mahajan, S.M., Shatashvili, N.L., Mikeladze, S.V.: Acceleration of plasma flows due to reverse dynamo mechanism, Astrophys. J., 634, 419-425 (2005)

    Article  Google Scholar 

  28. Zweibel, E.G.: Ambipolar diffusion drifts and dynamos in turbulent gases, Astrophys. J., 329, 384-391 (1988)

    Article  Google Scholar 

  29. Proctor, M.R.E., Zweibel, E.G.: Dynamos with ambipolar diffusion drifts, Geophys. Astrophys. Fluid Dyn., 64, 145-161 (1992)

    Article  Google Scholar 

  30. Brandenburg, A., Subramanian, K.: Large scale dynamos with ambipolar diffusion nonlinearity, Astron. Astrophys., 361, L33-L36 (2000)

    Google Scholar 

  31. Zweibel, E. G., Heitsch, F.: Fast Dynamos in weakly ionized gases, Astrophys. J., 684, 373-379 (2008)

    Article  Google Scholar 

  32. Mininni, P. D., Gómez, D.O., Mahajan, S. M.: Dynamo action in Hall magnetohydrodynamics, ApJ., 567, L81 - L83 (2002)

    Article  Google Scholar 

  33. Kunz, M.W.: On the linear stability of weakly ionized, magnetized planar shear flows, Mon. Not. Royal Astron. Soc., 385, 1494-151 (2008)

    Article  Google Scholar 

  34. Bejarano C., Gómez D.O., Brandenburg, A.: Shear-driven instabilities in Hall-magnetohydrodynamic plasmas, Astrophys. J., 737, 62 (11pp.) (2011)

    Article  Google Scholar 

  35. Danilovic, S., Schüssler, M., Solanki, S.: Probing quiet Sun magnetism using MURaM simulations and Hinode/SP results: support for a local dynamo, Astron. Astrophys., 513, A1 (8pp.) (2010)

    Article  Google Scholar 

  36. Rempel, M.: Numerical simulations of quiet Sun magnetism: On the Contribution from a Small-scale Dynamo, Astrophys. J., 789, 132 (22pp.) (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges Joint ICTP-IAEA College on Advance Plasma Physics, 2014 and the financial support from International Centre for Theoretical Physics (ICTP), Trieste, Italy for providing an important platform for useful discussions on MHD Dynamo with Prof. Swadesh Mahajan. The author would also like to thank S.M. Chitre, Vinod Krishan and R.T. Gangadhara for useful discussions and support.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, K.A.P. (2019). Mean Field Magnetohydrodynamic Dynamo in Partially Ionized Plasma: Nonlinear, Numerical Results. In: Singh, V., Gao, D., Fischer, A. (eds) Advances in Mathematical Methods and High Performance Computing. Advances in Mechanics and Mathematics, vol 41. Springer, Cham. https://doi.org/10.1007/978-3-030-02487-1_22

Download citation

Publish with us

Policies and ethics