Skip to main content

Laplace Transform and Its Application in Circuits

  • Chapter
  • First Online:
Fundamentals of Modern Electric Circuit Analysis and Filter Synthesis

Abstract

Most of the circuits introduced so far have been analyzed in time domain. This means that the input to the circuit, the circuit variables, and the responses have been presented as a function of time. All the input functions such as unit step, ramp, impulse, exponential, sinusoidal, etc. have been introduced as a time-dependent variable, and their effects on circuits have been identified directly as a function of time. This required utilization of differential equations and solutions in time domain. However, high-order circuits result in high-order differential equations, which, considering the initial conditions, sometimes are hard to solve. In addition, for circuits which are exposed to a spectrum of frequencies such as filters, the time domain analysis is a limiting factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Author information

Authors and Affiliations

Authors

Laplace Transform

Laplace Transform

  1. 7.1

    Find the Laplace transform of the following functions:

    1. (a)

      f(t) = 10u(t)

    2. (b)

      f(t) =  − 20δ(t)

    3. (c)

      f(t) =  − 5tu(t)

    4. (d)

      f(t) = 10e −30t u(t)

    5. (e)

      f(t) = 3te −5t u(t)

    6. (f)

      f(t) = 20 sin 75tu(t)

    7. (g)

      f(t) = sin2 ωtu(t)

    8. (h)

      f(t) = cos2 ωtu(t)

    9. (i)

      f(t) = 10 sin (5t+30)u(t)

    10. (j)

      \( f(t)=110\sqrt{2}\cos 377t\ u(t) \)

    11. (k)

      f(t) = 12 sinh 20t u(t)

    12. (l)

      f(t) = 10 cosh 2πt u(t)

  2. 7.2

    Find the Laplace of the following function operations:

    1. (a)

      f(t) = 2u(t)+5tu(t)

    2. (b)

      f(t) = 10 sin 20t+5 cos 20t

    3. (c)

      f(t) = 5 sin 3t −  cos 15t

    4. (d)

      f(t) = 3e −10t sin 15t

    5. (e)

      f(t) = 75e −100t cos 314t

    6. (f)

      f(t) = 3e −10t sinh 15t

    7. (g)

      f(t) = 75e −100t cosh 314t

    8. (h)

      f(t) = 13tu(t − 5)

    9. (i)

      f(t) = 10te −3t u(t − 4)

    10. (j)

      f(t) = 5t 3 u(t)

  3. 7.3

    Find the Laplace inverse of the following functions:

    1. (a)

      F(s) = 1+s

    2. (b)

      \( F(s)=\frac{1}{s+5} \)

    3. (c)

      \( F(s)=\frac{s}{s+5} \)

    4. (d)

      \( F(s)=\frac{s-1}{s+5} \)

    5. (e)

      \( F(s)=\frac{1}{s^2+25} \)

    6. (f)

      \( F(s)=\frac{s+1}{s^2+25} \)

    7. (g)

      \( F(s)=\frac{s^2-1}{s^2+25} \)

    8. (h)

      \( F(s)=\frac{1}{s^2-25} \)

    9. (i)

      \( F(s)=\frac{s+1}{s^2-25} \)

    10. (j)

      \( F(s)=\frac{1}{s^2+7s+12} \)

    11. (k)

      \( F(s)=\frac{s+1}{s^2+7s+12} \)

    12. (l)

      \( F(s)=\frac{s^2+5s+6}{s^2+7s+12} \)

    13. (m)

      \( F(s)=\frac{1}{s^2+6s+100} \)

    14. (n)

      \( F(s)=\frac{s+1}{s^2+6s+100} \)

    15. (o)

      \( F(s)=\frac{s^2+1}{s^2+6s+100} \)

    16. (p)

      \( F(s)=\frac{s^2+s+1}{s^2+6s+100} \)

    17. (q)

      \( F(s)=\frac{1}{s\left({s}^2+100\right)} \)

    18. (r)

      \( F(s)=\frac{1}{s\left(s+3\right)\left(s+7\right)} \)

    19. (s)

      \( F(s)=\frac{\left(s+1\right)\left(s+2\right)}{s\left(s+3\right)\left(s+7\right)} \)

    20. (t)

      \( F(s)=\frac{1}{s^3{\left(s+3\right)}^2\left(s+7\right)} \)

    21. (u)

      \( F(s)=\frac{1}{s}{e}^{-3s} \)

    22. (v)

      \( F(s)=\frac{1}{s^2}\left({e}^{-3s}+{e}^{-5s}\right) \)

    23. (w)

      \( F(s)={e}^{-10s}\frac{s}{s+5} \)

    24. (x)

      \( F(s)=\frac{e^{-s}}{s^2+25} \)

    25. (y)

      \( F(s)=\frac{\left(s+1\right){e}^{2s}}{s^2+25} \)

    26. (z)

      \( F(s)=\frac{20}{{\left(s+3\pi \right)}^5} \)

  4. 7.4

    Prove that:

    1. (a)

      \( L\left\{\cosh at\cos at\right\}=\frac{s^3}{s^4+4{a}^4} \)

    2. (b)

      \( L\left\{{t}^2\cos\ \omega t\right\}=\frac{2s\left({s}^2-3{\omega}^2\right)}{{\left({s}^2+{\omega}^2\right)}^3} \)

  5. 7.5

    Find the convolution of h(t) = f(t) ∗ g(t), wherein f(t) & g(t) are:

    1. (a)

      f(t) = u(t) − u(t − 5), g(t) = 3u(t − 4) − 3u(t − 5).

    2. (b)

      f(t) = u(t) − u(t − 5), g(t) = 3tu(t) − 3(t − 5)u(t − 5) − 3u(t − 5).

    3. (c)

      f(t) = 5u(t) − u(t − 1) − u(t − 2) − 3u(t − 3), g(t) = 3tu(t) − 6(t − 1)u(t − 1)+3(t − 2)u(t − 2).

  6. 7.6

    Do the following convolution integrals using Laplace and direct method:

    1. (a)

      f 1(t) ∗ f 2(t)

figure a
  1. (b)

    f 3(t) ∗ f 4(t)

figure b
  1. (c)

    f 5(t) ∗ f 6(t)

figure c
  1. 7.7

    Solve the following differential equations using Laplace transform:

(a)

\( \dot{y}+9y=0 \)

y(0) = 5

(b)

\( \ddot{y}+9y=0 \)

y(0) = 0,y ′(0) = 2

(c)

\( \ddot{y}+2\dot{y}=10u(t) \)

y(0) = 1,y ′(0) =  − 1

(d)

\( \ddot{y}+2\dot{y}=10 tu(t) \)

y(0) = 1,y ′(0) =  − 1

(e)

\( \ddot{y}-2\dot{y}-3y=\dot{\delta} \)

y(0) = 1,y ′(0) = 7

(f)

\( 4\ddot{y}+y=0 \)

y(0) = 1,y ′(0) =  − 2

(g)

\( 4\ddot{y}+y=\sin (t) \)

y(0) = 0,y ′(0) =  − 1

(h)

\( \ddot{y}+2\dot{y}+5y=0 \)

y(0) = 2,y ′(0) =  − 4

(i)

\( \ddot{y}+2y=u(t)-u\left(t-1\right) \)

y(0) = 0,y ′(0) = 0

(j)

\( \ddot{y}+3\dot{y}+2y=\delta \left(t-a\right) \)

y(0) = 0,y ′(0) = 0

  1. 7.8

    Using Laplace transform find i 1(t), i 2(t), v(t).

figure d
  1. 7.9

    Using Laplace transform find v o(t).

figure e
  1. 7.10

    Using Laplace transform find v o(t).

figure f
  1. 7.11

    Using Laplace transform find I 1, V o(t).

figure g
  1. 7.12

    Using Laplace transform find i(t), v(t).

figure h
  1. 7.13

    Using Laplace transform find i(t), v(t).

figure i
  1. 7.14

    Using Laplace transform find v 1(t), v 2(t), v 3(t).

figure j
  1. 7.15

    Using Laplace transform find v 1(t), v 2(t), i 1(t), i 2(t).

figure k
  1. 7.16

    Using Laplace transform find v 1(t), v 2(t), i 1(t), i 2(t).

figure l
  1. 7.17

    Using Laplace transform find i 1(t), i 2(t), i 3(t).

figure m
  1. 7.18

    Using Laplace transform find v 1(t), v o(t).

figure n

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Izadian, A. (2019). Laplace Transform and Its Application in Circuits. In: Fundamentals of Modern Electric Circuit Analysis and Filter Synthesis. Springer, Cham. https://doi.org/10.1007/978-3-030-02484-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02484-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02483-3

  • Online ISBN: 978-3-030-02484-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics