Skip to main content

Introduction

  • Chapter
  • First Online:
Spectrum-Aware Mobile Computing

Abstract

Recent advances in smartphone technologies and wireless communications have created a strong uptick in the use of smart applications over web-enabled, resource-constrained end devices. In order to support such computation and data intensive applications over wireless devices, two problems must be addressed: (1) the resource constraints on the device (e.g., battery power, memory, etc.) and (2) network constraints (e.g., capacity/spectrum and latency limitations). Multiple radio spectrum access technologies (multi-RAT) is becoming one of the ways to address some of the network related problems (e.g., capacity). The heterogeneous network (HetNets) paradigm, enabling multi-RATs is expected to become a mainstay of future wireless networks. Simultaneous access to multiple RATs or spectrum bands can be implemented at the transport layer, network layer, or PHY/MAC layer of wireless devices. The growth of mobile virtual network operators (MVNO) will also facilitate such multi-RAT opportunistic spectrum access. Google’s recent deal with Sprint and T-Mobile is an example in this direction.

At the device level, cloud offloading has emerged as an indispensable part of the solution to the device level constraints. However, offloading computations to a remote cloud can also place an additional burden on the already overburdened wireless backbone. The term “cloud offloading” can mean data flow offloading or offloading computationally intense tasks to the cloud along with the data resulting from the computations. Here we mean the latter. In this chapter, we discuss the factors affecting computation offloading and discuss the organization of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.gartner.com/newsroom/id/3598917.

  2. 2.

    http://aws.amazon.com/workspaces/.

  3. 3.

    www.chameleoncloud.org/nsf-cloud-workshop/.

  4. 4.

    http://www.lysesoft.com/.

  5. 5.

    Federal Emergency Management Agency.

References

  1. S. Barbarossa, S. Sardellitti, P. Di Lorenzo, Computation offloading for mobile cloud computing based on wide cross-layer optimization, in Future Network and Mobile Summit (FutureNetworkSummit), July 2013, pp. 1–10

    Google Scholar 

  2. C. Buschmann, D. Pfisterer, S. Fischer, S.P. Fekete, A. Kröller, Spyglass: a wireless sensor network visualizer. ACM Sigbed Rev. 2(1), 1–6 (2005)

    Article  Google Scholar 

  3. W. Cai, V.C. Leung, M. Chen, Next generation mobile cloud gaming, in IEEE International Symposium on Service Oriented System Engineering (SOSE) (2013), pp. 551–560

    Google Scholar 

  4. X. Chen, J. Wu, Y. Cai, H. Zhang, T. Chen, Energy-efficiency oriented traffic offloading in wireless networks: a brief survey and a learning approach for heterogeneous cellular networks. IEEE J. Sel. Areas Commun. 33(4), 627–640 (2015)

    Article  Google Scholar 

  5. E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu, R. Chandra, P. Bahl, MAUI: making smartphones last longer with code offload, in Proceedings of the International Conference on Mobile Systems, Applications, and Services, MobiSys (ACM, New York, 2010), pp. 49–62

    Google Scholar 

  6. T. Dao, I. Singh, H.V. Madhyastha, S.V. Krishnamurthy, G. Cao, P. Mohapatra, TIDE: a user-centric tool for identifying energy hungry applications on smartphones, in IEEE International Conference on Distributed Computing Systems (ICDCS), June 2015, pp. 123–132

    Google Scholar 

  7. S. Deng, L. Huang, J. Taheri, A. Zomaya, Computation offloading for service workflow in mobile cloud computing. IEEE Trans. Parallel Distrib. Syst. PP(99), 1–1 (2014)

    Google Scholar 

  8. W. Dong, S. Rallapalli, R. Jana, L. Qiu, K. K. Ramakrishnan, L. Razoumov, Y. Zhang, T.W. Cho, iDEAL: incentivized dynamic cellular offloading via auctions. IEEE/ACM Trans. Netw. 22(4), 1271–1284 (2014)

    Article  Google Scholar 

  9. X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, D. Milojicic, Adaptive offloading for pervasive computing. IEEE Pervasive Comput. 3(3), 66–73 (2004)

    Article  Google Scholar 

  10. C. Gui, P. Mohapatra, Power conservation and quality of surveillance in target tracking sensor networks, in Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, MobiCom’04 (2004), pp. 129–143

    Google Scholar 

  11. K. Hong, S. Sengupta, R. Chandramouli, Spiderradio: a cognitive radio implementation using IEEE 802.11 components. IEEE Trans. Mob. Comput. 12(11), 2105–2118 (2013)

    Article  Google Scholar 

  12. D. Huang, P. Wang, D. Niyato, A dynamic offloading algorithm for mobile computing. IEEE Trans. Wirel. Commun. 11(6), 1991–1995 (2012)

    Article  Google Scholar 

  13. D. Kaspar, Multipath aggregation of heterogeneous access networks. SIGMultimedia Rec. 4(1), 27–28 (2012)

    Article  MathSciNet  Google Scholar 

  14. S. Kosta, A. Aucinas, P. Hui, R. Mortier, X. Zhang, Thinkair: dynamic resource allocation and parallel execution in the cloud for mobile code offloading, in IEEE Proceedings of INFOCOM (2012), pp. 945–953

    Google Scholar 

  15. K. Kumar, Y.H. Lu, Cloud computing for mobile users: can offloading computation save energy? Computer 43, 51–56 (2010)

    Article  Google Scholar 

  16. Y. Li, M. Qian, D. Jin, P. Hui, Z. Wang, S. Chen, Multiple mobile data offloading through disruption tolerant networks. IEEE Trans. Mob. Comput. 13(7), 1579–1596 (2014)

    Article  Google Scholar 

  17. S. Li, E. Ekici, N. Shroff, Throughput-optimal queue length based CSMA/CA algorithm for cognitive radio networks. IEEE Trans. Mob. Comput. 14(5), 1098–1108 (2015)

    Article  Google Scholar 

  18. X. Ma, Y. Zhao, L. Zhang, H. Wang, L. Peng, When mobile terminals meet the cloud: computation offloading as the bridge. IEEE Mag. Netw. 27(5), 28–33 (2013)

    Article  Google Scholar 

  19. S.E. Mahmoodi, K.P.S. Subbalakshmi, A time-adaptive heuristic for cognitive cloud offloading in multi-rat enabled wireless devices. IEEE Trans. Cogn. Commun. Netw. 2(2), 194–207 (2016)

    Article  Google Scholar 

  20. M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, et al., Mobile-edge computing introductory technical white paper, in White Paper, Mobile-Edge Computing (MEC) Industry Initiative (2014)

    Google Scholar 

  21. P. Shu, F. Liu, H. Jin, M. Chen, F. Wen, Y. Qu, eTime: energy-efficient transmission between cloud and mobile devices, in IEEE Conference on Computer Communications (INFOCOM), April 2013, pp. 195–199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahmoodi, S.E., Subbalakshmi, K., Uma, R.N. (2019). Introduction. In: Spectrum-Aware Mobile Computing. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-02411-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02411-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02410-9

  • Online ISBN: 978-3-030-02411-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics