Skip to main content

Climate Theory and Tropical Cyclone Risk Assessment

  • Chapter
  • First Online:
Hurricane Risk

Part of the book series: Hurricane Risk ((HR,volume 1))

Abstract

The links between the ability of general circulation models to simulate tropical cyclones and the development of a climate theory of tropical cyclone formation are explored, with an emphasis on the potential of general circulation models (GCMs) and theory for tropical cyclone hazard and risk assessment. While GCMs can now generate a reasonable simulation of the observed tropical cyclone formation rates and intensity distributions, they are very expensive to run. Simpler methods involving statistical relationships between climate variables and tropical cyclone formation have been developed and have been used for hazard assessment, but like other methods used for projections, such as downscaling or GCMs, they do not constitute a theory of tropical cyclone formation. An outline is given of some of the possible characteristics of such a theory and its potential utility for climate science and risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballinger AP, Merlis TM, Held IM, Zhao M (2015) The sensitivity of tropical cyclone activity to off-equatorial thermal forcing in aquaplanet simulations. J Atmos Sci 72:2286–2302

    Article  Google Scholar 

  • Bin J, Tian F, Lin Y, Wang Y (2018) Low probability of tropical cyclones on ocean planets in the habitable zones of M dwarfs. Icarus 299:364–369

    Article  Google Scholar 

  • Bister M, Emanuel KA (2002) Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J Geophys Res Atmos 107:4801

    Article  Google Scholar 

  • Bruyère CL, Holland GJ, Towler E (2012) Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic Basin. J Clim 25:8611–8626

    Article  Google Scholar 

  • Camargo SJ, Wing AA (2016) Tropical cyclones in climate models. WIRES Clim Chang 7:211–237

    Article  Google Scholar 

  • Camargo SJ, Emanuel KA, Sobel AH (2007) Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J Clim 20:4819–4834

    Article  Google Scholar 

  • Camargo SJ, Tippett MK, Sobel AH, Vecchi GA, Zhao M (2014) Testing the performance of tropical cyclone genesis indices in future climates using the HIRAM model. J Clim 27:9171–9196

    Article  Google Scholar 

  • Charney JG (1947) The dynamics of long waves in a baroclinic westerly current. J Meteorol 4:136–162

    Article  Google Scholar 

  • Chavas DR, Reed KA, Knaff JA (2017) Physical understanding of the tropical cyclone wind-pressure relationship. Nat Commun 8:1360

    Article  Google Scholar 

  • Cobb A, Done J (2017) The use of global climate models for tropical cyclone risk assessment. In: Collins J, Walsh K (eds) Hurricanes and climate change, vol 3. Springer, Dordrecht, pp 167–186

    Chapter  Google Scholar 

  • Daloz A-S, Chauvin F, Walsh K, Lavender S, Abbs D, Roux F (2012) The ability of GCMs to simulate tropical cyclones and their precursors over the North Atlantic Main Development Region. Clim Dyn 39:1559–1576

    Article  Google Scholar 

  • DeMaria M, Kaplan J (1994) A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Weather Forecast 9:209–220. https://doi.org/10.1175

  • Duvel JP, Camargo SJ, Sobel AH (2017) Role of the convection scheme in modeling initiation and intensification of tropical depressions over the North Atlantic. Mon Weather Rev 145:1495–1509

    Article  Google Scholar 

  • Dvorak VF (1975) Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon Weather Rev 103:420–430

    Article  Google Scholar 

  • Eady ET (1949) Long waves and cyclone waves. Tellus 1:33–52

    Article  Google Scholar 

  • Emanuel KA (1986) An air–sea interaction theory for tropical cyclones, part I: steady-state maintenance. J Atmos Sci 43:585–605

    Article  Google Scholar 

  • Emanuel KA (1988) The maximum intensity of hurricanes. J Atmos Sci 45:1143–1155

    Article  Google Scholar 

  • Emanuel K (2000) A statistical analysis of tropical cyclone intensity. Mon Weather Rev 128:1139–1152

    Article  Google Scholar 

  • Emanuel K (2006) Climate and tropical cyclone activity: a new model downscaling approach. J Clim 19:4797–4802

    Article  Google Scholar 

  • Emanuel KA (2010) Tropical cyclone activity downscaled from NOAA-CIRES reanalysis, 1908–1958. J Adv Model Earth Syst 2. https://doi.org/10.3894/JAMES.2010.2.1

  • Emanuel K (2017) A fast intensity simulator for tropical cyclone risk analysis. Nat Hazards 88:779–796

    Article  Google Scholar 

  • Emanuel K, Nolan DS (2004) Tropical cyclone activity and the global climate system. In: Proceedings of 26th AMS Conference on Hurricanes and Tropical Meteorology, No. 10A.2, pp 240–241

    Google Scholar 

  • Ferreira RN, Schubert WH (1997) Barotropic aspects of ITCZ breakdown. J Atmos Sci 54:261–285

    Article  Google Scholar 

  • Frank WM (1987) Tropical cyclone formation. In: Elsberry RL (ed) A global view of tropical cyclones. Office of Naval Research, Washington, DC, pp 53–90

    Google Scholar 

  • Frank WM (2008) What role do tropical cyclones play in the general circulation? In: Proceedings of the 28th Conference on Hurricanes and Tropical Meteorology, 28 April–2 May 2008, Orlando, FL, American Meteorological Society

    Google Scholar 

  • Gettelman A, Bresch DN, Chen CC, Truesdale JE, Bacmeister JT (2017) Projections of future tropical cyclone damage with a high-resolution global climate model. Clim Chang 7:496

    Article  Google Scholar 

  • Gray WM (1968) Global view of the origin of tropical disturbances and storms. Mon Weather Rev 96:669–700

    Article  Google Scholar 

  • Gray WM (1975) Tropical cyclone genesis. Colorado State University, Colorado

    Google Scholar 

  • Gray WM (1979) Hurricanes: their formation, structure and likely role in the tropical circulation. In: Shaw DB (ed) Meteorology over the tropical oceans. Royal Meteorolgical Soc, Bracknell, pp 155–218

    Google Scholar 

  • Haarsma RJ, Roberts MJ, Vidale PL, Senior CA, Bellucci A, Bao Q, Chang P, Corti S, Fuckar NS, Guemas V, Von Hardenberg J (2016) High resolution model intercomparison project (HighResMIP v1. 0) for CMIP6. Geosci Model Dev 9:4185–4208

    Article  Google Scholar 

  • Hayashi Y-Y, Sumi A (1986) The 30–40 day oscillations simulated in an “aqua planet” model. J Meteorol Soc Jpn 64:451–467

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Holland GJ (1983) Tropical cyclone motion: environmental interaction plus a beta effect. J Atmos Sci 40:328–342

    Article  Google Scholar 

  • Holland GJ (1997) The maximum potential intensity of tropical cyclones. J Atmos Sci 54:2519–2541

    Article  Google Scholar 

  • Khairoutdinov M, Emanuel K (2013) Rotating radiative-convective equilibrium simulated by a cloud-resolving model. J Adv Model Earth Syst 5:816–825

    Article  Google Scholar 

  • Knutson TR, Sirutis JJ, Zhao M, Tuleya RE, Bender M, Vecchi GA, Villarini G, Chavas D (2015) Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J Clim 28:7203–7224

    Article  Google Scholar 

  • Korty RL, Camargo SJ, Galewsky J (2012a) Variations in tropical cyclone genesis factors in simulations of the Holocene Epoch. J Clim 25:8196–8211. https://doi.org/10.1175/JCLI-D-12-00033.1

    Article  Google Scholar 

  • Korty RL, Camargo SJ, Galewsky J (2012b) Tropical cyclone genesis factors in simulations of the Last Glacial Maximum. J Clim 25:4348–4365. https://doi.org/10.1175/JCLI-D-11-00517.1

    Article  Google Scholar 

  • Kossin JP, Olander TL, Knapp KR (2013) Trend analysis with a new global record of tropical cyclone intensity. J Clim 26:9960–9976

    Article  Google Scholar 

  • Lavender SL, Walsh KJE, Caron L-P, King M, Monkiewicz S, Guishard M, Hunt B, Zhang Q (2018) Estimation of the maximum annual number of North Atlantic tropical cyclones using climate models. Sci Adv 4:eaat6509. Submitted to Science

    Article  Google Scholar 

  • Lee CY, Tippett MK, Camargo SJ, Sobel AH (2015) Probabilistic multiple linear regression modeling for tropical cyclone intensity. Mon Weather Rev 143:933–954

    Article  Google Scholar 

  • Lee CY, Tippett MK, Sobel AH, Camargo SJ (2018) An environmentally forced tropical cyclone hazard model. J Adv Model Earth Syst. https://doi.org/10.1002/2017MS001186

    Article  Google Scholar 

  • Lin II, Black P, Price JF, Yang CY, Chen SS, Lien CC, Harr P, Chi NH, Wu CC, D’Asaro EA (2013) An ocean coupling potential intensity index for tropical cyclones. Geophy Res Lett 40:1878–1882

    Article  Google Scholar 

  • McGauley MG, Nolan DS (2011) Measuring environmental favorability for tropical cyclogenesis by statistical analysis of threshold parameters. J Clim 24:5968–5997

    Article  Google Scholar 

  • Menkes CE, Lengaigne M, Marchesiello P, Jourdain NC, Vincent EM, Lefèvre J, Chauvin F, Royer JF (2012) Comparison of tropical cyclogenesis indices on seasonal to interannual timescales. Clim Dyn 38:301–321

    Article  Google Scholar 

  • Merlis TM (2014). Tropical cyclone frequency in simulations of the Last Glacial Maximum. Available at: https://ams.confex.com/ams/31Hurr/webprogram/Paper244915.html.

  • Merlis TM, Zhou W, Held IM, Zhao M (2016) Surface temperature dependence of tropical cyclone-permitting simulations in a spherical model with uniform thermal forcing. Geophys Res Lett 43(6):2859–2865

    Article  Google Scholar 

  • Miyamoto Y, Bryan GH, Rotunno R (2014) An analytical model of maximum potential intensity for tropical cyclones incorporating the effect of ocean mixing. Geophys Res Lett 107:4801

    Google Scholar 

  • Montgomery MT, Smith RK (2017) Recent developments in the fluid dynamics of tropical cyclones. Ann Rev Fluid Mech 49:541–574

    Article  Google Scholar 

  • Murakami H, Wang Y, Yoshimura Y, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S et al (2012) Future changes in tropical cyclone activity projected by the new high-resolution MRIAGCM. J Clim 25:3237–3260

    Article  Google Scholar 

  • Murakami H, Vecchi GA, Underwood S, Delworth TL, Wittenberg AT, Anderson WG, Chen JH, Gudgel RG, Harris LM, Lin SJ, Zeng F (2015) Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J Clim 28:9058–9079

    Article  Google Scholar 

  • Patricola CM, Saravanan R, Chang P (2018) The response of Atlantic tropical cyclones to suppression of African easterly waves. Geophys Res Lett 45:471–479. https://doi.org/10.1002/2017GL076081

    Article  Google Scholar 

  • Pope V et al (2007) The Met Office Hadley Centre climate modelling capability: the competing requirements for improved resolution, complexity and dealing with uncertainty. Philos Trans R Soc A365:2635–2657

    Article  Google Scholar 

  • Sharmila S, Walsh KJE (2017) Impact of large-scale dynamic versus thermodynamic climate conditions on contrasting tropical cyclone genesis frequency. J Clim 30:8865–8883

    Article  Google Scholar 

  • Simpson RH, Saffir H (1974) The hurricane disaster potential scale. Weatherwise 27:169

    Article  Google Scholar 

  • Sugi M, Noda A, Sato N (2002) Influence of the global warming on tropical cyclone climatology: an experiment with the JMA global model. J Meteorol Soc Jpn 80:249–272

    Article  Google Scholar 

  • Sugi M, Murakami H, Yoshida K (2016) Projection of future changes in the frequency of intense tropical cyclones. Clim Dyn 49:619–632. https://doi.org/10.1007/s00382-016-3361-7

    Article  Google Scholar 

  • Swanson KL (2008) False causality between Atlantic hurricane activity fluctuations and seasonal lower atmospheric wind anomalies. Geophys Res Lett 35:L18807

    Article  Google Scholar 

  • Tang B, Emanuel K (2012) Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model. J Atmos Sci 69:2394–2413

    Article  Google Scholar 

  • Tippett MK, Camargo SJ, Sobel AH (2011) A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J Clim 24:2335–2357

    Article  Google Scholar 

  • Torn RD, Snyder C (2012) Uncertainty of tropical cyclone best-track information. Weather Forecast 27:715–729

    Article  Google Scholar 

  • Tory KJ, Frank WM (2010) Tropical cyclone formation. In: JCL C, Kepert JD (eds) Global perspectives on tropical cyclones; from science to mitigation. World Scientific, Singapore, pp 55–92

    Chapter  Google Scholar 

  • Tory KJ, Ye H, Dare RA (2017) Understanding the geographic distribution of tropical cyclone formation for applications in climate models. Clim Dyn 50:2489–2512

    Article  Google Scholar 

  • Viale F, Merlis TM (2017) Variations in tropical cyclone frequency response to solar and CO2 forcing in aquaplanet simulations. J Adv Model Earth Syst 9:4–18

    Article  Google Scholar 

  • Villarini G, Vecchi GA (2012) Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models. Nature Clim Chang 2:604

    Article  CAS  Google Scholar 

  • Walsh KJE, Camargo SJ, Vecchi GA, Daloz AS, Elsner J, Emanuel K, Horn M, Lim Y-K, Roberts M, Patricola C, Scoccimarro E, Sobel AH, Strazzo S, Villarini G, Wehner M, Zhao M, Kossin J, LaRow T, Oouchi K, Schubert S, Wang H, Bacmeister J, Chang P, Chauvin F, Jablonowski C, Kumar A, Murakami H, Ose T, Reed KA, Saravanan R, Yamada Y, Zarzycki CM, Vidale P-L, Jonas JA, Henderson N (2015) Hurricanes and climate: the U.S. CLIVAR working group on hurricanes. Bull Am Meteorol Soc 96:997–1017

    Article  Google Scholar 

  • Walsh KJE, McBride JL, Klotzbach PJ, Balachandran, Camargo SJ, Holland G, Knutson TR, Kossin J, Lee TC, Sobel A, Sugi M (2016) Tropical cyclones and climate change. WIRES Clim Chang 7:65–89. https://doi.org/10.1002/wcc.371

    Article  Google Scholar 

  • Wehner M, Reed KA, Zarzycki CM (2017) High-resolution multi-decadal simulation of tropical cyclones. In: Collins J, Walsh K (eds) Hurricanes and climate change, vol 3. Springer, Dordrecht, pp 187–212

    Chapter  Google Scholar 

  • Wing AA, Emanuel K, Holloway CE, Muller C (2017) Convective self-aggregation in numerical simulations: a review. Surv Geophys 38:1173–1197

    Article  Google Scholar 

  • Yan Q, Wei T, Zhang Z (2017) Variations in large-scale tropical cyclone genesis factors over the western North Pacific in the PMIP3 last millennium simulations. Clim Dyn 48:957–970

    Article  Google Scholar 

  • Yoshida K, Sugi M, Mizuta R, Murakami H, Ishii M (2017) Future changes in tropical cyclone activity in high-resolution large-ensemble simulations. Geophys Res Lett 44:9910–9917

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge funding from Australian Research Council Discovery Projects DP150102272. Funding also has been supplied by the Bermuda Institute of Ocean Sciences’ Risk Prediction Initiative (RPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Walsh .

Editor information

Editors and Affiliations

Appendix: Formulation of GPIs

Appendix: Formulation of GPIs

Emanuel and Nolan (2004):

$$ GP={\left|{10}^5\eta \right|}^{\frac{3}{2}}{\left(\frac{H}{50}\right)}^3{\left(\frac{V_{pot}}{70}\right)}^3{\left(1+0.1{V}_{shear}\right)}^{-2} $$
  • η = absolute vorticity at 850 hPa (s−1)

  • H = Relative humidity at 700 hPa (%)

  • V pot = potential intensity (m s−1) calculated using a routine provided by Emanuel (http://eaps4.mit.edu/faculty/Emanuel/)

  • V shear = vertical shear from 850 to 200 hPa (m s−1)

Emanuel (2010):

$$ GP={\left|\eta \right|}^3{\chi}^{-\frac{4}{3}}\max {\left(\left({V}_{pot}-35\right),0\right)}^2{\left(25+{V}_{shear}\right)}^{-4} $$

χ = saturation deficit

Tippett et al. (2011):

$$ TCS=\exp \left(b+{b}_{\eta}\eta +{b}_HH+{b}_TT+{b}_VV+\log \left( cos\phi \right)\right) $$
  • η = clipped absolute vorticity at 850 hPa in 105 s−1 (η =  min (η, 3.7))

  • \( T= SST-{\overline{SST}}^{\left[{20}^{{}^{\circ}}S-{20}^{{}^{\circ}}N\right]} \) in °C

  • ϕ = latitude

  • H = Relative humidity at 600 hPa (%)

  • V = vertical shear from 850 to 200 hPa (m s−1)

The constants used are those from line 6 of Tippett et al. (2011)’s Table 1 and are those used by Menkes et al. (2012):

$$ b=-5.8;{b}_{\eta }=1.03;{b}_H=0.05;{b}_T=0.56;{b}_V=-0.15 $$

Bruyere et al. (2012):

$$ CGI={\left(\frac{V_{pot}}{70}\right)}^3{\left(1+0.1{V}_{shear}\right)}^{-2} $$

Since the CGI does not include a vorticity term to remove TCs that form close to the equator, its values are set to zero between 0 and 5°N.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walsh, K. (2019). Climate Theory and Tropical Cyclone Risk Assessment. In: Collins, J., Walsh, K. (eds) Hurricane Risk. Hurricane Risk, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-02402-4_8

Download citation

Publish with us

Policies and ethics