Skip to main content

Global Tropical Cyclone Damage Potential

  • Chapter
  • First Online:
Hurricane Risk

Part of the book series: Hurricane Risk ((HR,volume 1))

Abstract

An approach to assessing the damage potential of tropical cyclones (TCs) is developed using a combination of physical reasoning and results of previous studies. The key TC damage parameters of intensity, size, and translational speed are incorporated into a single index of Cyclone Damage Potential (CDP). The CDP is developed to represent offshore wind, wave, and current damage. Further testing is needed to establish the importance of each TC parameter for onshore wind and coastal surge damage. The CDP is applicable to individual TCs and to seasonal, global, and climatological assessments. Global climatological summaries reveal high damage potential pathways and the dominant contribution of the Northwest Pacific to total global damage potential. Assessing actual impact requires an additional step of combining the CDP with an exposure and vulnerability assessment derived from a range of local factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen JT, Tippett MK, Sobel AH (2015) An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment. J Adv Model Earth Syst 7:226–243. https://doi.org/10.1002/2014MS000397

    Article  Google Scholar 

  • Arnold TH, Chiltern CH (1963) New index shows plant cost trends. Chem Eng 70:143–148

    CAS  Google Scholar 

  • Bell GD, Halpert MS, Schnell RC, Higgins RW, Lawrimore J, Kousky VE, Tinker R, Thiaw W, Chelliah M, Artusa A (2000) Climate Assessment for 1999. Bull Am Meteorol Soc 81:1328–1132

    Article  Google Scholar 

  • BOM (2017) Tropical cyclone severity categories. Bureau of Meteorology. http://www.bom.gov.au/cyclone/about/. Accessed 1 Oct 2017

  • Chavas DR, Yonekura E, Karamperidou C, Cavanaugh N, Serafin K (2013) U.S. hurricanes and economic damage: extreme value perspective. Nat Hazards Rev 14(4):237–246

    Article  Google Scholar 

  • Czajkowski J, Done JM (2014) As the wind blows? Understanding hurricane damages at the local level through a case study analysis. Weather Clim Soc 6:202–217

    Article  Google Scholar 

  • Davenport AG (1967) Gust loading factors. J Struct Div 93:11–34

    Google Scholar 

  • Davis C, Wang W, Chen SS, Chen Y, Corbosiero K, DeMaria M, Dudhia J, Holland G, Klemp J, Michalakes J, Reeves H, Rotunno R, Snyder C, Xiao Q (2008) Prediction of land falling hurricanes with the advanced hurricane WRF model. Mon Weather Rev 136:1990–2005. https://doi.org/10.1175/2007MWR2085.1

    Article  Google Scholar 

  • Demuth J, DeMaria M, Knaff JA (2006) Improvement of advanced microwave sounder unit tropical cyclone intensity and size estimation algorithms. J Appl Meteor Climatol 45:1573–1581

    Article  Google Scholar 

  • Done JM, PaiMazumder D, Towler E, Kishtawal D (2015) Estimating tropical cyclone impacts using an index of damage potential. Clim Chang. https://doi.org/10.1007/s10584-015-1513-0

    Article  Google Scholar 

  • Done JM, Simmons KS, Czajkowski J (2018) Relationship between residential losses and hurricane winds: role of the Florida building code. ASCE-ASME J Risk Uncertainty Eng Syst Part A 4(1). https://doi.org/10.1061/AJRUA6.0000947

    Article  Google Scholar 

  • Elsner JB, Hodges RE, Jagger TH (2012) Spatial grids for hurricane climate research. Clim Dyn 39:21–36

    Article  Google Scholar 

  • Emanuel KA (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688

    Article  CAS  Google Scholar 

  • Emanuel KA (2011) Global warming effects on U.S. hurricane damage. Weather Clim Soc 3:261–268

    Article  Google Scholar 

  • Geiger T, Frieler K, Levermann A (2016) High-income does not protect against hurricane losses. Environ Res Lett 11:084012. https://doi.org/10.1088/1748-9326/11/8/084012

    Article  Google Scholar 

  • Gray WM, Landsea CW (1992) African rainfall as a precursor of hurricane-related destruction on the U.S. east coast. Bull Am Meteorol Soc 73:1352–1364

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2012) Homogeneous record of Atlantic hurricane surge threat since 1923. Proc Natl Acad Sci 109:19601–19605

    Article  CAS  Google Scholar 

  • Hebert C, Weinzapfel R (2006) The hurricane severity index. Impact Weather. http://impactweather.com/pdf/hsi.pdf. Accessed 1 Oct 2017

  • Holland GJ (1983) Tropical cyclone motion: environmental interaction plus a beta effect. J Atmos Sci 40:328–342

    Article  Google Scholar 

  • Holland GJ (2012) Hurricanes and rising global temperatures. Proc Natl Acad Sci 109(48):19513–19514

    Article  CAS  Google Scholar 

  • Irish JL, Resio DT, Ratcliff JJ (2008) The influence of storm size on hurricane surge. J Phys Oceanogr 38:2003–2013

    Article  Google Scholar 

  • Jain V (2010) The role of wind duration in damage estimation. AIR currents. http://www.air-worldwide.com/Publications/AIR-Currents/2010/The-Role-of-Wind-Duration-in-Damage-Estimation/. Accessed 1 Oct 2017

  • Kantha L (2006) Time to replace the saffir-simpson hurricane scale? EOS Trans AGU 87(1):3

    Article  Google Scholar 

  • Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The international best track archive for climate stewardship (IBTrACS): unifying tropical cyclone best track data. Bull Am Meteorol Soc 91:363–376

    Article  Google Scholar 

  • Kozar ME, Misra V (2014) Statistical prediction of integrated kinetic energy in North Atlantic tropical cyclones. Mon Weather Rev 142:4646–4657

    Article  Google Scholar 

  • Lin N, Emanuel K, Oppenheimer M, Vanmarcke E (2012) Physically based assessment of hurricane surge threat under climate change. Nat Clim Chang 2(6):462–467

    Article  Google Scholar 

  • Matyas CJ (2010) Associations between the size of hurricane rain fields at landfall and their surrounding environments. Meteorog Atmos Phys 106:135–148

    Article  Google Scholar 

  • Miller C, Gibbons M, Beatty K, Boissonnade A (2013) Topographic speed-up effects and observed roof damage on Bermuda following hurricane Fabian (2003). Weather Forecast 28:159–174

    Article  Google Scholar 

  • Murnane RJ, Elsner JB (2012) Maximum wind speeds and US hurricane losses. Geophys Res Lett 39:L16707

    Article  Google Scholar 

  • Needham HF, Keim BD, Sathiaraj D (2015) A review of tropical cyclone-generated storm surges: global data sources, observations, and impacts. Rev Geophys 53:545–591. https://doi.org/10.1002/2014RG000477

    Article  Google Scholar 

  • NHC (2017) The saffir-simpson hurricane wind scale. National Hurricane Center. http://www.nhc.noaa.gov/aboutsshws.php. Accessed 1 Oct 2017

  • Olsen A, Porter K (2011) What we know about demand surge: brief summary. Nat Hazards Rev 12(2):62–71

    Article  Google Scholar 

  • Pielke RA (2007) Future economic damage from tropical cyclones: sensitivities to societal and climate changes. Phil Trans R Soc A 365:1–13

    Article  Google Scholar 

  • Pita G, de Schwarzkopf MLA (2016) Urban downburst vulnerability and damage assessment from a case study in Argentina. Nat Hazards 83(1):445–463. https://doi.org/10.1007/s11069-016-2323-z

    Article  Google Scholar 

  • Pita G, Pinelli J, Gurley K, Mitrani-Reiser J (2015) State of the art of hurricane vulnerability estimation methods: a review. Nat Hazards Rev 16(2). https://doi.org/10.1061/(ASCE)NH.1527-6996.0000153

    Article  Google Scholar 

  • Powell MD, Reinhold TA (2007) Tropical cyclone destructive potential by integrated kinetic energy. Bull Am Meteor Soc 88:513–526

    Article  Google Scholar 

  • Proudman J (1953) Dynamical oceanography. Methuen, London Wiley, New York

    Google Scholar 

  • Rego JL, Li C (2009) On the importance of the forward speed of hurricanes in storm surge forecasting: a numerical study. Geophys Res Lett 36:L07609

    Article  Google Scholar 

  • Schmidt S, Kemfert C, Hoppe P (2010) The impact of socio-economics and climate change on tropical cyclone losses in the USA. Reg Environ Chang 10:13–26

    Article  Google Scholar 

  • Simpson RH, Riehl H (1981) The hurricane and its impact. Louisiana State Univ Press, Baton Rouge

    Google Scholar 

  • Smith SE (2010) Managing catastrophic risk: beyond cat bonds. In: Tang K (ed) Weather risk management: a guide for corporations, hedge funds and investors. Incisive financial publishing ltd, p 199–213

    Google Scholar 

  • Tippett MK, Sobel AH, Camargo SJ (2012) Association of U.S. tornado occurrence with monthly environmental parameters. Geophys Res Lett 39:L02801. https://doi.org/10.1029/2011GL050368

    Article  Google Scholar 

  • Tippett MK, Sobel AH, Camargo SJ, Allen JT (2014) An empirical relation between U.S. tornado activity and monthly environmental parameters. J Clim 27:2983–2999. https://doi.org/10.1175/JCLI-D-13-00345.1

    Article  Google Scholar 

  • Vatavuk WM (2002) Updating the plant cost index. Chem Eng 109(1):62–70

    Google Scholar 

  • Walker G, Reardon G, Jancauskas E (1988) Observed effects of topography on the wind field of cyclone Winifred. J Wind Eng Ind Aerod 28:79–88

    Article  Google Scholar 

  • Yu J-Y, Chou C, Chiu P–G (2009) A revised accumulated cyclone energy index. Geophys Res Lett 36:L14710

    Article  Google Scholar 

  • Zhai AR, Jiang JH (2014) Dependence of US hurricane economic loss on maximum wind speed and storm size. Environ Res Lett 9:064019

    Article  Google Scholar 

Download references

Acknowledgements

NCAR is funded by the National Science Foundation and this work was partially supported by NSF Award 1048829, the Willis Research Network, the Research Partnership to Secure Energy for America, and the Climatology and Simulation of Eddies/Eddies Joint Industry Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg J. Holland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holland, G.J., Done, J.M., Douglas, R., Saville, G.R., Ge, M. (2019). Global Tropical Cyclone Damage Potential. In: Collins, J., Walsh, K. (eds) Hurricane Risk. Hurricane Risk, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-02402-4_2

Download citation

Publish with us

Policies and ethics