Skip to main content

Reservoir Performance Prediction

  • Chapter
  • First Online:
Reservoir Engineering

Abstract

Reservoir performance prediction is a key aspect of the oil and gas field development planning and reserves estimation which depicts the behaviour of the reservoir in the future; its success is dependent on accurate description of the reservoir rock properties, fluid properties, rock-fluid properties and flow performance. It therefore implies that engineers must have sound knowledge of the reservoir characteristics and production operations optimization and more importantly, to develop a mathematical model that will adequately depict the physical processes occurring in the reservoir such that the outcome of any action can be predicted within reasonable engineering tolerance of errors. Several Authors such as Muskat, Tarner’s, Tracy’s and Schilthuis developed a method of reservoir performance prediction based on material balance equation (MBE) by combining the appropriate MBE with the instantaneous GOR. These techniques are iterative and the calculations are repeated at a series of assumed reservoir pressure drops. These calculations are usually based on stock-tank barrel of oil-in-place at bubble point pressure and above the bubble point pressure, the cumulative oil produced is calculated directly from he material balance equations. In this chapter, the various mathematical models and algorithms for each technique are explicitly presented and validated with case studies. Also, at the end of the chapter, several exercises and references are given to further help strengthen readers understanding of the subject matter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cole F (1969) Reservoir engineering manual. Gulf Publishing Company, Houston

    Google Scholar 

  • Cosse R (1993) Basics of reservoir engineering. Editions technic, Paris

    Google Scholar 

  • Craft BC, Hawkins M, Terry RE (1991) Applied petroleum reservoir engineering, 2nd edn. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Dake LP (1978) Fundamentals of reservoir engineering. Elsevier, Amsterdam

    Google Scholar 

  • Economides M, Hill A, Economides C (1994) Petroleum production systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Hawkins M (1955) Material balances in expansion type reservoirs above bubble-point. SPE Transactions Reprint Series No. 3, 36–40

    Google Scholar 

  • Muskat M (1945) The production histories of oil producing gas-drive reservoirs. J Appl Phys 16:167

    Article  Google Scholar 

  • Tarek A (2010) Reservoir engineering handbook, 3rd edn. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Tarner J (1944) How different size gas caps and pressure maintenance programs affect amount of recoverable oil. Oil Weekly 144:32–34

    Google Scholar 

  • Tracy G (1955) Simplified form of the MBE. Trans AIME 204:243–246

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Exercises

Exercises

Ex 11.1 :

Given the data below of a volumetric oil reservoir

Bubble point pressure, P b

1700 psia

STOIIP, N

77.89 MMstb

Connate water saturation, S wc

25%

Water influx, W e

0

Water injection, W inj

0

Reservoir temperature

2000 F

Fluid properties

P

(psi)

Bo (bb//STB)

Rs (scf/STB)

Bg (cuft/SCF)

μo (cp)

μg (cp)

1700

1.265

962

0.00741

1.19

0.0294

1500

1.241

873

0.00842

1.22

0.0270

1300

1.214

784

0.00983

1.25

0.0251

1099

1.191

689

0.01179

1.3

0.0235

900

1.161

595

0.01471

1.35

0.0232

700

1.147

495

0.011931

1.5

0.0230

501

1.117

392

0.02779

1.8

0.0226

300

1.093

282

0.04828

2.28

0.0223

100

1.058

150

0.15272

3.22

0.0209

figure i

kg/ko Curve versus liquid saturation

Using the Tarner method and adopting the following criteria for the maximum allowable error:

$$ \left| Error\right|=\left|\frac{\ {\left({G}_p\right)}_{GOR,\kern0.5em 2870}-{\left({G}_p\right)}_{MBE,\kern0.5em 2870}}{\ {\left({G}_p\right)}_{GOR,\kern0.5em 2870}}\right|\times 100\%\le 1\% $$

Calculate the following:

  • The oil cumulative production for (P = 1500, 1300, 1099)

  • The instantaneous gas-oil production ratio

  • The gas cumulative production

Ex 11.2 :

Repeat Ex 11.1 using Muskat method

Ex 11.3 :

Given the following data of Level GT oil reservoir in Ugbomro:

Bubble point pressure, P b

2650 psia

STOIIP, N

12.89 MMstb

Connate water saturation, S wc

23%

Water influx, W e

0

Water injection, W inj

0

Reservoir temperature

2000 F

Pressure (psia)

Bo (rb/STB

Bg (rb/STB)

Rs (scf/STB)

Uo (cp)

Uo (cp

2650

1.3814

0.000895

680

0.956

0.018

2180

1.3791

0.000947

574

1.236

0.0165

1825

1.3572

0.000988

528

1.492

0.0152

The relative permeability ratio is calculated as

$$ \frac{k_{rg}}{k_{ro}}=0.000128{e}^{17.257{S}_g} $$

Predict the performance (oil and gas production) of the reservoir at 2180 psia and 1825 psia

Ex 11.4 :

The following data are obtained from a depletion drive reservoir:

P.psia

2600

2400

2100

1800

1500

1200

1000

700

400

Rsi, SCF/STB

1340

1340

1340

1280

1150

985

860

662

465

ΒO, bbl/STB

1.45

1.46

1.480

1.468

1.440

1.339

1.360

1.287

1.202

Βg, B/SCF × 10−3

1.283

1.518

1.853

2.365

2.885

4.250

7.680

μO/μg

34.1

38.3

42.4

48.8

53.6

62.5

79.0

Additional Data:

Initial reservoir pressure, P i

2925 psia

Bubble point pressure, P b

2100 psia

STOIIP, N

100 MMstb

Connate water saturation, S wc

15%

Initial oil formation volume factor, β oi

1.429 bbl/stb

Kg/Ko

26

12.5

3.3

0.8

0.19

0.022

0.01

So,%

30

40

50

60

70

80

84

Predict the reservoir performance, using Tarner method, effective from the time when the pressure is 2400 psia up to the time when the pressure becomes 400 psia. The productivity index was determined as 0.5 bbl/day/psi when the reservoir pressure was 2400 psia. Assume Pwf = 200 psia and J2 = J1O1/ βO2) to plot P, Np, Gp, Rp & qo Vs. time.

Ex 11.5 :

Given the following data for a depletion drive reservoir, calculate the cumulative oil and gas production and the average GOR when the pressure reaches 700 psi using Tarner method.

Oil viscosity, μ o

1.987 cp

Gas viscosity, μ g

0.01426 cp

STOIIP, N

90.45 MMstb

Connate water saturation, S wc

20.5%

P, psi

ΒO, bbl/STB

Rs SCF/STB

Βg, bbl/SCF

Np, MMSTB

Gp, MMSCF

Ri. SCF/STB

1125

1.1236

230

--------

0.0

0.0

------

900

-------

--------

--------

6.76

--------

-------

800

1.0965

150

--------

9.41

4708

850

700

1.0925

132

0.003748

?

?

?

Kg/Ko

0.018

0.02

0.025

0.028

0.033

0.038

0.044

0.050

Sg,%

10

10.5

11

11.5

12

12.5

13

13.5

Ex 11.6 :

The following data are obtained from a gas cap drive reservoir:

P.psia

1710

1400

1200

1000

800

600

400

200

Rsi, SCF/STB

462

399

359

316

272

225

176

122

ΒO, bbl/STB

1.205

1.18

1.164

1.148

1.131

1.115

1.097

1.075

Βg, bbl/SCF

0.00129

0.00164

0.00197

0.00245

0.00316

0.00436

0.0068

0.0143

μO/μg

113.5

122

137.5

163

197

239

284

Additional Data:

Initial reservoir pressure, P i

1710 psia

Current point pressure, P

1400 psia

STOIIP, N

40 MMstb

Gas initially in place, G

790*N

Cumulative oil produced, N p @1400 psia

0.176*N stb

Solution GOR, R s

8490 scf/stb

Gas cap size, m

4.0

Connate water saturation, S wc

15%

Reservoir, β oi

1.429 bbl/stb

Kg/Ko

0.9

0.4

0.18

0.075

0.034

0.02

0.01

0.0028

SL,%

70

75

80

85

90

92.5

95

97.5

  1. (a)

    Predict the reservoir performance, using Tarner method, effective from the time when the pressure is 1400 psia up to the time when the pressure becomes 200 psia.

  2. (b)

    Plot the predicted reservoir performance (Np Vs. P. & GOR)

Ex 11.7 :

Given the following data for a saturated depletion drive reservoir. Calculate the cumulative oil and gas production and the average GOR, when the pressure reaches 2100 psi using Schilthuis method. μO / μg = 41.645 at 2100 psi, Initial reservoir pressure = 2500 psi, and connate water saturation = 0.20.

P, psi

ΒO, bbl/STB

Rs SCF/STB

Βg × 10−3, bbl/SCF

Np/N

Gp/N

Ri. SCF/STB

2500

1.498

721

1.048

0.0

0.0

721

2300

1.463

669

1.155

0.0168

11.67

669

2100

1.429

617

1.280

?

?

?

Kg/Ko

27.0

7.5

0.3

0.55

0.2

0.05

0.01

0.001

SL,%

30

40

50

60

70

80

90

93

Ex 11.8 :

Given the following data for a depletion drive reservoir, calculate the cumulative oil and gas production and the average GOR when the pressure reaches 1200 psi using Schilthuis method. N = 10.025 MM STB, Sw = 0.22. μo / μg = 108.96 at 1200 psi. Pi = 3013 psi, Pb =2496 psi.

P, psi

ΒO, bbl/STB

Rs SCF/STB

Βg bbl/SCF

Np/N

Gp/N

Ri. SCF/STB

3013

1.315

650

--------

0.0

0.0

650

2496

1.325

650

-------

-------

--------

650

1302

1.233

450

---------

1.179

1.123

2080

1200

1.224

431

0.001807

?

?

?

Kg/Ko

0.71

0.255

0.095

0.03

0.01

SL,%

70

75

80

85

89

Ex 11.9 :

Given the following data for a saturated depletion drive reservoir. Calculate the cumulative oil and gas production and the average GOR, when the pressure reaches 1900 psi using Schilthuis method. μO / μg = 41. 645 at 1900 psi, Initial reservoir pressure = 2500 psi, and connate water saturation = 0.20.

P, psi

ΒO, bbl/STB

Rs SCF/STB

Βg × 10−3, bbl/SCF

Np/N

Gp/N

Ri. SCF/STB

2500

1.498

721

1.048

0.0

0.0

721

2300

1.463

669

1.155

0.0168

11.67

669

2100

1.429

617

1.280

0.0427

28.87

658

1900

1.395

565

1.440

?

?

?

Kg/Ko

0.012

0.018

0.02

0.025

0.033

0.044

0.057

0.074

Sg,%

9

10

10.5

11

12

13

14

15

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okotie, S., Ikporo, B. (2019). Reservoir Performance Prediction. In: Reservoir Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-02393-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02393-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02392-8

  • Online ISBN: 978-3-030-02393-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics