Skip to main content

Applications of Autonomous Data Partitioning

  • Chapter
  • First Online:
Empirical Approach to Machine Learning

Part of the book series: Studies in Computational Intelligence ((SCI,volume 800))

Abstract

In this chapter, the algorithm summaries of both, the offline and evolving versions of the proposed autonomous data partitioning (ADP) algorithm described in chapter 7 are provided. Numerical examples based on well-known benchmark datasets are presented for evaluating the performance of the ADP algorithm on data partitioning. Furthermore, numerical examples on semi-supervised classification are also conducted as a potential application of the ADP algorithm. The state-of-the-art approaches are used for comparison. Numerical experiments demonstrate that the ADP algorithm is able to perform high quality data partitioning results in a highly efficient, objective manner. The ADP algorithm can also be used for classification even when there is very little supervision available. The pseudo-code of the main procedure of the ADP algorithm and the MATLAB implementations can be found in appendices B.2 and C.2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Gu, P.P. Angelov, J.C. Principe, A method for autonomous data partitioning. Inf. Sci. (Ny) 460–461, 65–82 (2018)

    Article  Google Scholar 

  2. V. Lohweg, J.L. Hoffmann, H. Dörksen, R. Hildebrand, E. Gillich, J. Hofmann, J. Schaede, Banknote authentication with mobile devices. Media Watermarking, Security, and Forensics 8665, 866507 (2013)

    Google Scholar 

  3. https://archive.ics.uci.edu/ml/datasets/banknote+authentication

  4. D. Ayres-de-Campos, J. Bernardes, A. Garrido, J. Marques-de-Sa, L. Pereira-Leite, SisPorto 2.0: A program for automated analysis of cardiotocograms. J. Matern. Fetal. Med. 9(5), 311–318 (2000)

    Google Scholar 

  5. https://archive.ics.uci.edu/ml/datasets/Cardiotocography

  6. R.K. Rock, A. Chilingarian, M. Gaug, F. Hakl, T. Hengstebeck, M. Jiřina, J. Klaschka, E. Kotrč, P. Savický, S. Towers, A. Vaiciulis, W. Wittek, Methods for multidimensional event classification: A case study using images from a Cherenkov gamma-ray telescope. Nucl. Instrum. Methods Phys. Res., Sect. A 516(2–3), 511–528 (2004)

    Google Scholar 

  7. http://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope

  8. P.W. Frey, D.J. Slate, Letter recognition using Holland-style adaptive classifiers. Mach. Learn. 6(2), 161–182 (1991)

    Google Scholar 

  9. https://archive.ics.uci.edu/ml/datasets/Letter+Recognition

  10. A. Okabe, B. Boots, K. Sugihara, S.N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, 2nd edn. (Wiley, Chichester, England, 1999)

    MATH  Google Scholar 

  11. D. Comaniciu, P. Meer, Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  12. M. Ester, H.P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise. Int. Conf. Knowl. Disc. Data Min. 96, 226–231 (1996)

    Google Scholar 

  13. P.P. Angelov, D.P. Filev, An approach to online identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(1), 484–498 (2004)

    Article  Google Scholar 

  14. D.M. Blei, M.I. Filev, Variational inference for Dirichlet process mixtures. Bayesian Anal. 1(1A), 121–144 (2004)

    MathSciNet  Google Scholar 

  15. J. Li, S. Ray, B.G. Lindsay, A non-parametric statistical approach to clustering via mode identification. J. Mach. Learn. Res. 8(8), 1687–1723 (2007)

    MathSciNet  MATH  Google Scholar 

  16. R. Dutta Baruah, P. Angelov, Evolving local means method for clustering of streaming data. IEEE Int. Conf. Fuzzy Syst. 8, 10–15 (2012)

    Google Scholar 

  17. D.W. Aha, Incremental constructive induction: an instance-based approach, in Machine Learning Proceedings (1991) pp. 117–121

    Google Scholar 

  18. https://archive.ics.uci.edu/ml/datasets/Tic-Tac-Toe+Endgame

  19. J.W. Smith, J.E. Everhart, W.C. Dickson, W.C. Knowler, R.S. Johannes, Using the ADAP learning algorithm to forecast the onset of diabetes mellitus, in Annual Symposium on Computer Application in Medical Care (1988) pp. 261–265

    Google Scholar 

  20. https://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

  21. L.M. Candanedo, V. Feldheim, Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models. Energy Build. 112, 28–39 (2016)

    Article  Google Scholar 

  22. https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+

  23. N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  24. P. Cunningham, S.J. Delany, K-nearest neighbour classifiers. Mult. Classif. Syst. 34, 1–17 (2007)

    Google Scholar 

  25. Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nat. Methods 13(1), 35–38 (2015)

    MathSciNet  Google Scholar 

  26. S.R. Safavian, D. Landgrebe, A survey of decsion tree clasifier methodology. IEEE Trans. Syst. Man. Cybern. 21(3), 660–674 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Plamen P. Angelov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Angelov, P.P., Gu, X. (2019). Applications of Autonomous Data Partitioning. In: Empirical Approach to Machine Learning. Studies in Computational Intelligence, vol 800. Springer, Cham. https://doi.org/10.1007/978-3-030-02384-3_11

Download citation

Publish with us

Policies and ethics